PERSISTENGE: 1/0 DEVICES

Shivaram Venkataraman
CS 537, Spring 2019



ADMINISTRIVIA

Project 4a: Out tonight, due on April 4t

Work in groups of up to two

Grades: Project 2b, 3, midterm by tomorrow!



AGENDA / LEARNING OUTCOMES

How does the OS interact with |/O devices!?

What are the components of a hard disk drive?



RECAP



OPERATING SYSTEMS: THREE EASY PIECES

Three conceptual pieces
| .Virtualization
2. Concurrency

3. Persistence



VIRTUALIZATION

Make each application believe it-has\each resource to itself
CPU ndw

Abstraction: Process API,AW
Mechanism:

Limited direct execution, CPU scheduling
S o~ ———

T

Address translation (segmentation, paging, TLB)

Policy: MLFQ, LRU etc.
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CONGURRENCGY

Events occur simultaneously and may interact with one another

Need to
Hide concurrency from independent processes

Manage concurrency with interacting processes

Provide abstractions (locks, semaphores, condition variables etc.) <
Correctnessimutual exclusion i T v
ul jordering - {1 &)t o
. . { <
Performance: scaling data structures, fairness w}v &
WJ J.

Common Bugs! N6 Q}ﬁ


Shivaram

Shivaram

Shivaram

Shivaram

Shivaram


OPERATING SYSTEMS: THREE EASY PIECES

Three conceptual pieces
| .Virtualization

2. Concurrency
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MOTIVATION

What good is a computer without any I/O devices!  ;w’

M\

keyboard, display, disks W 4\o
We want: v

- H/W that will let us plug in different devices

- OS that can interact with different combinations
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S

s HARDWARE SUPPORT FOR 1/0

!

CPU

Memory Bus %

< » Peripheral /0O Bus \J\
(e.g., SCSI SATA USB) @b
kN
Duske derwes | VSR e
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Graphics

PCle
Graphics

Network

Memory
Interconnect

Keyboard

Mouse

USB
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CANONICAL DEVICE

OS reads/writes to these

4 AV, L T . X}J/L
Device Registers Status | | COMMAND || DATA [ |0+
Mo o;/;;Uef """"""""""" . U
R v
-
NN - OMar ook e Ohgt
C,G‘\D (}\(\ \/ 3\
3 e
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WP

EXAMPLE WRITE PROTOCOL
%Q]ﬁdz\w \rlﬂﬂ{o f oy

Microcontroller (CPU+RAM) I
Extra RAM R

Other special-purpose chips

while (STATUS == BUSY) K
i // spin O s
Write data to DATA register

Write command to COMMAND register
while (STATUS == BUSY)

; // spin
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gg[hsk Y244 gféfé%%ﬁf;
Gﬁﬁ

CA
4 —
47ﬁh11e (STATUS == BUSY) (i:iii:)

Write data to DATA register /] 2
Write command to COMMAND register // 3

while (STATUS == BUi}) // 4A7

e ()
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S
g , C
g ) 5 M e

v
CPU: h i-glil
Disk:

I ¢
I

AV

while (STATUS == BUSY) v

// 1
walt for interrupty%

Write data to DATA register // 2

Write command to COMMAND register \// 3
while (STATUS == BUSY)

—

// 4
wait for interrupt; N
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N
o
. L
‘50 INTERRUPTS VS. POLLING
) Cbs, Grodk (s
Yy, | —
Are interrupts always better than polling? Pox( (2 | ([\
Pl Tt
?Fast device)Better to spin than take interrupt overhead
— Device time unknown? Hybrid approach (spin then use interrupts)
Flood of interrupts arrive WJL> (e X aundh = | s

— Can lead to livelock (always handling interrupts)

— Better to ignore interrupts while make some progress handling them
Other improvement

— Interrupt coalescing (batch together several interrupts) e

W__?/ Q\C//”/

gt
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PROTOCOL VARIANTS

Status COMMAND DATA

Microcontroller (CPU+RAM)
Extra RAM

Other special-purpose chips

Status checks: polling vs. int
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DATA TRANSFERCOSTS

54,
Q\D 8(&( o W;\C (/ Q(

CPU |1 |1 ]| 1]1]1

Disk C\*”\LB 111 [1]1]1
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PROGRAMMED I/0 VS/DIRECT MEMORY AGCESS

Db

PIO (Programmed I/O):
— CPU directly tells device what the data is

DMA (Direct Memory Access):
— CPU leaves data in memory

— Device reads data directly from memory
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CPU [ 1 [ 1 [ 1] 1

Disk

\y
NS
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Disk:

/// ‘“& R
while (STATUS == BUSY) %M // 1 v

Write command to COMMAND register // 3
while (STATUS == BUSY) // 4
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PROTOCOL VARIANTS

Status COMMAND DATA

Microcontroller (CPU+RAM)
Extra RAM

Other special-purpose chips

Status checks: polling vs. interrupts

PIO vs DMA



Status COMMAND DATA

Microcontroller (CPU+RAM)
Extra RAM

Other special-purpose chips

while (STATUS == BUSY) // 1

’

Write data to DATA register /] 2

Write command to COMMAND register 3
while (STATUS == BUSY) // 4

L]
’



SPECIAL INSTRUCTIONS VS. MEM-MAPPED I/0 s

o+
\o AR
Special instructions «@ PR h \giéb\\ ﬁb
— each device has a port - 3%
— in/out instructions (x86) communicate with device O @Q : g@
/ (W
- /"
Memory-Mapped I/O < 0
S
— H/W maps registers into address space A R &o@
— loads/stores sent to device \ 5
ﬂk ﬂ \
¥
v

Doesn’t matter much (both are used)
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PROTOCOL VARIANTS

¢
Al
Status COMMAND DATA 7
" Microcontroller (CPU+RAM) 0 droesh
— I
Extra RAM
Other special-purpose chips
Status checks: polling vs. interrupts b Qomavt \{0\\:"\06
PIO vs DMA — s Wk

Special instructions vs. Memory mapped I/O

—a e |e" M

MW
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DEVIGE DRIVERS

Application
POSIX API [open, read, write, close, etc.]

(\

"] File System } ‘ Raw
\/G\ eric Block Interface [block read/write]

Generic Block Layer
Speciﬁc{B/Iock Inteﬁac@[protocol-smcific read/write]

@ [SCSI, ATA, etc.]

Prorocs

user

kernel mode
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VARIETY IS A CHALLENGE

Problem:
— many, many devices
— each has its own protocol

How can we avoid writing a slightly different OS for each H/W combination?
<L
. S . (v N
Write device driver for each device \Q’“
A Qiu‘
Drivers are 70% of Linux source code
T

Y
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- BUNNY 10

https://tinyurl.com/cs537-sp |1 9-bunny 10



Sy o
o F{FM ”52%\ BUNNY 10 @&ﬁ\

If you have a fast non-volatile memory based storage device, which approach
would work better? : N.WM

O

What part of a device protocol is improved by usin

Dok (o
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HARD DISKS



HARD DISK INTERFACGE
St

-

Disk has a sector-addressable address space s o :
Appears as an array of sectors ;e /%—(/ﬁ
Sectors are typically 512 bytes nm,o} o
w{‘@(e/ :

Main operations: reads + writes to sectors Momc

Mechanical and slow (?)

\_/\/_\/
9 xp@m}iw

.05

ceA
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Platter




Surface

L

Spindle

Surface
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RPM?

Motor connected to spindle spins plattey

\L
Rate of rotation
/_r

10000 RPM > single rotation is 6 ms

= —— .
1000 N IV
\

|0 @2° {gm}&m ‘PU e
At ) 4
" \O OO "

S Lakonty _Lg_r T 6

T o eeT



Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram


Surface is divided into rings: tracks

Stack of tracks(across platters); cylinder
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Tracks are divided into
numbered sectors
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Heads on a moving arm can
read from each surface.
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READING DATA FROM DISK

Rotates this way

< b Rotational delay

(Fo
W o

YRS L
N
lx U “(Y(’ &,r' \ﬂﬁ«vd’
T b
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READING DATA FROM DISK

Rotates this way
4—

Seek Time

! Al
pe

¢t
g

n{t
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TIME TO READ/WRITE

Three components:

Time = seek + rotation + transfer time
—

! Ly

pele Y.V e
Kt e

Qﬁxg 0
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SEEK, ROTATE, TRANSFER
J —

Seek cost: Function of cylinder distance Depends on rotations per minute (RPM)
purely _ _—
Must accelerate, coast, decelerate, settle M

Average rotation!? ~
RSettIing alone can take 0.5 - 2 ms e \ ° 0})& < “ S

Entire seeks often takes 4 - 10 ms

Average seek = |/3 of max seek Pretty fast: depends on RPM and sector density.

R —
WU\\W& \nﬂ’e\& |00+ MB/s is typical for maximum transfer rate
\ 1

Yﬂj& W\@_QL\A ) W
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BUNNY 11

https://tinyurl.com/cs537-sp| 9-bunr@
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Bl tav [ es5v1op1 b || BUNNY

Cheetah 15K.5 Barracuda
Capacity 00.GB 1TB
What is the time for 4KB RPM Mm] 7,200
random read? Average Seek 4 ms 9 ms
Max Transfer 125 MB/s 105 MB/s
Jean)s Platters - -+
ﬂw - Tﬁfohﬁﬂ " Cache 16 MB  16/32 MB
Connects via SCSI SATA
Chetah
Sk Tk I g AR AP
lc - 25yle
et 26 Myl .
4oxlo”
0z 20 j\/(a = 7.8 z
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NEXT STEPS

Advanced disk features

Scheduling disk requests

Project 4a: Out tonight

Grades: Project 2b, 3, midterm by tomorrow!



