PERSISTENGE: 1/0 DEVICES

Shivaram Venkataraman
CS 537, Spring 2019



ADMINISTRIVIA

Project 4a: Out tonight, due on April 4t

Work in groups of up to two

Grades: Project 2b, 3, midterm by tomorrow!



AGENDA / LEARNING OUTCOMES

How does the OS interact with |/O devices!?

What are the components of a hard disk drive?



RECAP



OPERATING SYSTEMS: THREE EASY PIECES

Three conceptual pieces
| .Virtualization
2. Concurrency

3. Persistence



VIRTUALIZATION

Make each application believe it-has\each resource to itself
CPU ndw

Abstraction: Process API,AW
Mechanism:

Limited direct execution, CPU scheduling
S o~ ———

T

Address translation (segmentation, paging, TLB)

Policy: MLFQ, LRU etc.


Shivaram

Shivaram

Shivaram

Shivaram

Shivaram


CONGURRENCGY

Events occur simultaneously and may interact with one another

Need to
Hide concurrency from independent processes

Manage concurrency with interacting processes

Provide abstractions (locks, semaphores, condition variables etc.) <
Correctnessimutual exclusion i T v
ul jordering - {1 &)t o
. . { <
Performance: scaling data structures, fairness w}v &
WJ J.

Common Bugs! N6 Q}ﬁ


Shivaram

Shivaram

Shivaram

Shivaram

Shivaram


OPERATING SYSTEMS: THREE EASY PIECES

Three conceptual pieces
| .Virtualization

2. Concurrency


Shivaram


MOTIVATION

What good is a computer without any I/O devices!  ;w’

M\

keyboard, display, disks W 4\o
We want: v

- H/W that will let us plug in different devices

- OS that can interact with different combinations


Shivaram

Shivaram


S

s HARDWARE SUPPORT FOR 1/0

!

CPU

Memory Bus %

< » Peripheral /0O Bus \J\
(e.g., SCSI SATA USB) @b
kN
Duske derwes | VSR e


Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram


Graphics

PCle
Graphics

Network

Memory
Interconnect

Keyboard

Mouse

USB



Shivaram

Shivaram

Shivaram

Shivaram


CANONICAL DEVICE

OS reads/writes to these

4 AV, L T . X}J/L
Device Registers Status | | COMMAND || DATA [ |0+
Mo o;/;;Uef """"""""""" . U
R v
-
NN - OMar ook e Ohgt
C,G‘\D (}\(\ \/ 3\
3 e


Shivaram

Shivaram

Shivaram

Shivaram

Shivaram


WP

EXAMPLE WRITE PROTOCOL
%Q]ﬁdz\w \rlﬂﬂ{o f oy

Microcontroller (CPU+RAM) I
Extra RAM R

Other special-purpose chips

while (STATUS == BUSY) K
i // spin O s
Write data to DATA register

Write command to COMMAND register
while (STATUS == BUSY)

; // spin


Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram


gg[hsk Y244 gféfé%%ﬁf;
Gﬁﬁ

CA
4 —
47ﬁh11e (STATUS == BUSY) (i:iii:)

Write data to DATA register /] 2
Write command to COMMAND register // 3

while (STATUS == BUi}) // 4A7

e ()


Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram


S
g , C
g ) 5 M e

v
CPU: h i-glil
Disk:

I ¢
I

AV

while (STATUS == BUSY) v

// 1
walt for interrupty%

Write data to DATA register // 2

Write command to COMMAND register \// 3
while (STATUS == BUSY)

—

// 4
wait for interrupt; N


Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram


N
o
. L
‘50 INTERRUPTS VS. POLLING
) Cbs, Grodk (s
Yy, | —
Are interrupts always better than polling? Pox( (2 | ([\
Pl Tt
?Fast device)Better to spin than take interrupt overhead
— Device time unknown? Hybrid approach (spin then use interrupts)
Flood of interrupts arrive WJL> (e X aundh = | s

— Can lead to livelock (always handling interrupts)

— Better to ignore interrupts while make some progress handling them
Other improvement

— Interrupt coalescing (batch together several interrupts) e

W__?/ Q\C//”/

gt


Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram


PROTOCOL VARIANTS

Status COMMAND DATA

Microcontroller (CPU+RAM)
Extra RAM

Other special-purpose chips

Status checks: polling vs. int


Shivaram


DATA TRANSFERCOSTS

54,
Q\D 8(&( o W;\C (/ Q(

CPU |1 |1 ]| 1]1]1

Disk C\*”\LB 111 [1]1]1



Shivaram

Shivaram

Shivaram

Shivaram


PROGRAMMED I/0 VS/DIRECT MEMORY AGCESS

Db

PIO (Programmed I/O):
— CPU directly tells device what the data is

DMA (Direct Memory Access):
— CPU leaves data in memory

— Device reads data directly from memory


Shivaram


CPU [ 1 [ 1 [ 1] 1

Disk

\y
NS



Shivaram

Shivaram

Shivaram

Shivaram

Shivaram


Disk:

/// ‘“& R
while (STATUS == BUSY) %M // 1 v

Write command to COMMAND register // 3
while (STATUS == BUSY) // 4


Shivaram

Shivaram

Shivaram

Shivaram

Shivaram


PROTOCOL VARIANTS

Status COMMAND DATA

Microcontroller (CPU+RAM)
Extra RAM

Other special-purpose chips

Status checks: polling vs. interrupts

PIO vs DMA



Status COMMAND DATA

Microcontroller (CPU+RAM)
Extra RAM

Other special-purpose chips

while (STATUS == BUSY) // 1

’

Write data to DATA register /] 2

Write command to COMMAND register 3
while (STATUS == BUSY) // 4

L]
’



SPECIAL INSTRUCTIONS VS. MEM-MAPPED I/0 s

o+
\o AR
Special instructions «@ PR h \giéb\\ ﬁb
— each device has a port - 3%
— in/out instructions (x86) communicate with device O @Q : g@
/ (W
- /"
Memory-Mapped I/O < 0
S
— H/W maps registers into address space A R &o@
— loads/stores sent to device \ 5
ﬂk ﬂ \
¥
v

Doesn’t matter much (both are used)


Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram


PROTOCOL VARIANTS

¢
Al
Status COMMAND DATA 7
" Microcontroller (CPU+RAM) 0 droesh
— I
Extra RAM
Other special-purpose chips
Status checks: polling vs. interrupts b Qomavt \{0\\:"\06
PIO vs DMA — s Wk

Special instructions vs. Memory mapped I/O

—a e |e" M

MW


Shivaram

Shivaram

Shivaram

Shivaram


DEVIGE DRIVERS

Application
POSIX API [open, read, write, close, etc.]

(\

"] File System } ‘ Raw
\/G\ eric Block Interface [block read/write]

Generic Block Layer
Speciﬁc{B/Iock Inteﬁac@[protocol-smcific read/write]

@ [SCSI, ATA, etc.]

Prorocs

user

kernel mode


Shivaram

Shivaram

Shivaram


VARIETY IS A CHALLENGE

Problem:
— many, many devices
— each has its own protocol

How can we avoid writing a slightly different OS for each H/W combination?
<L
. S . (v N
Write device driver for each device \Q’“
A Qiu‘
Drivers are 70% of Linux source code
T

Y



Shivaram

Shivaram


- BUNNY 10

https://tinyurl.com/cs537-sp |1 9-bunny 10



Sy o
o F{FM ”52%\ BUNNY 10 @&ﬁ\

If you have a fast non-volatile memory based storage device, which approach
would work better? : N.WM

O

What part of a device protocol is improved by usin

Dok (o


Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram


HARD DISKS



HARD DISK INTERFACGE
St

-

Disk has a sector-addressable address space s o :
Appears as an array of sectors ;e /%—(/ﬁ
Sectors are typically 512 bytes nm,o} o
w{‘@(e/ :

Main operations: reads + writes to sectors Momc

Mechanical and slow (?)

\_/\/_\/
9 xp@m}iw

.05

ceA


Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram


Platter




Surface

L

Spindle

Surface


Shivaram


RPM?

Motor connected to spindle spins plattey

\L
Rate of rotation
/_r

10000 RPM > single rotation is 6 ms

= —— .
1000 N IV
\

|0 @2° {gm}&m ‘PU e
At ) 4
" \O OO "

S Lakonty _Lg_r T 6

T o eeT



Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram


Surface is divided into rings: tracks

Stack of tracks(across platters); cylinder



Shivaram

Shivaram


Tracks are divided into
numbered sectors



Shivaram

Shivaram


Heads on a moving arm can
read from each surface.



Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram


READING DATA FROM DISK

Rotates this way

< b Rotational delay

(Fo
W o

YRS L
N
lx U “(Y(’ &,r' \ﬂﬁ«vd’
T b


Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram


READING DATA FROM DISK

Rotates this way
4—

Seek Time

! Al
pe

¢t
g

n{t



Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram


TIME TO READ/WRITE

Three components:

Time = seek + rotation + transfer time
—

! Ly

pele Y.V e
Kt e

Qﬁxg 0


Shivaram

Shivaram


SEEK, ROTATE, TRANSFER
J —

Seek cost: Function of cylinder distance Depends on rotations per minute (RPM)
purely _ _—
Must accelerate, coast, decelerate, settle M

Average rotation!? ~
RSettIing alone can take 0.5 - 2 ms e \ ° 0})& < “ S

Entire seeks often takes 4 - 10 ms

Average seek = |/3 of max seek Pretty fast: depends on RPM and sector density.

R —
WU\\W& \nﬂ’e\& |00+ MB/s is typical for maximum transfer rate
\ 1

Yﬂj& W\@_QL\A ) W


Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram


BUNNY 11

https://tinyurl.com/cs537-sp| 9-bunr@



Shivaram


Bl tav [ es5v1op1 b || BUNNY

Cheetah 15K.5 Barracuda
Capacity 00.GB 1TB
What is the time for 4KB RPM Mm] 7,200
random read? Average Seek 4 ms 9 ms
Max Transfer 125 MB/s 105 MB/s
Jean)s Platters - -+
ﬂw - Tﬁfohﬁﬂ " Cache 16 MB  16/32 MB
Connects via SCSI SATA
Chetah
Sk Tk I g AR AP
lc - 25yle
et 26 Myl .
4oxlo”
0z 20 j\/(a = 7.8 z


Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram


NEXT STEPS

Advanced disk features

Scheduling disk requests

Project 4a: Out tonight

Grades: Project 2b, 3, midterm by tomorrow!



