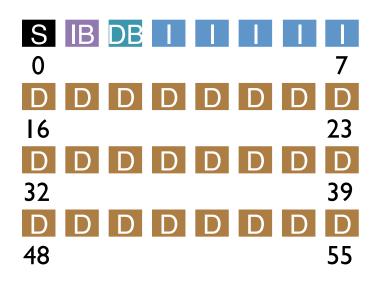
PERSISTENCE: JOURNALING, LFS

Shivaram Venkataraman CS 537, Spring 2019

ADMINISTRIVIA

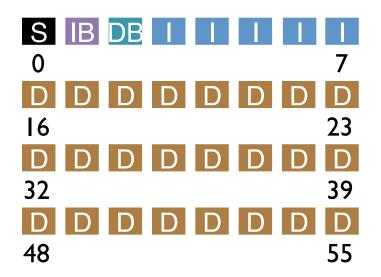
Project 5: Out now. Last Project!

Discussion today: Project 5


AGENDA / LEARNING OUTCOMES

How to use journaling to maintain consistency during crashes?

How to design a filesystem that performs better for small writes?


RECAP

FS STRUCTS

D	D	D	D	D	D	D	D
8							15
D	D	D	D	D	D	D	D
24							31
D	D	D	D	D	D	D	D
40							47
D	D	D	D	D	D	D	D
56							63

FS POINTERS: INODE, DIRECTORIES

FFS POLICY SUMMARY

File inodes: allocate in same group with dir

Dir inodes: allocate in new group with fewer used inodes than average group

First data block: allocate near inode

Other data blocks: allocate near previous block

Large file data blocks: after 48KB, go to new group. Move to another group (w/ fewer than avg blocks) every subsequent IMB.

HOW CAN FILE SYSTEM FIX INCONSISTENCIES?

Solution #1:

```
FSCK = file system checker
```

Strategy:

After crash, scan whole disk for contradictions and "fix" if needed Keep file system off-line until FSCK completes

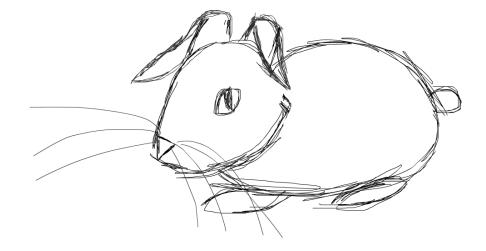
For example, how to tell if data bitmap block is consistent? Read every valid inode+indirect block If pointer to data block, the corresponding bit should be 1; else bit is 0

FSCK CHECKS

Do superblocks match?

Is the list of free blocks correct?

Do number of dir entries equal inode link counts?


Do different inodes ever point to same block?

Are there any bad block pointers?

Do directories contain "." and ".."?

• • •

BUNNY 18

https://tinyurl.com/cs537-sp19-bunny18

BUNNY 18

https://tinyurl.com/cs537-sp19-bunny18

```
Inode Bitmap : 10000000
Inode Table : [size=1,ptr=0,type=d] [] [] [] [] [] [] []
Data Bitmap : 1000000
Data : [("." 0), (".." 0)] [] [] [] [] [] []
```

There are only eight inodes and eight data blocks; each of these is managed by a corresponding bitmap. The inode table shows the contents of each of eight inodes, with an individual inode enclosed between square brackets; in the initial state above, only inode 0 is in use. When an inode is used, its size and pointer field are updated accordingly (in this question, files can only be one block in size; hence a single inode pointer); when an inode is free, it is marked with a pair of empty brackets like these "[]". Note there are only two file types: directories (type=d) and regular files (type=r). Data blocks are either "in use" and filled with something, or "free" and marked accordingly with "[]". Directory contents are shown in data blocks as comma-separated lists of tuples like: ("name", inode number). The root inode number is zero.

(a) INITIAL STATE: state(i) as above to FINAL STATE (a):

```
Inode Bitmap : 11000000
Inode Table : [size=1,ptr=0,type=d] [size=0,ptr=-,type=r] [] [] [] [] []
Data Bitmap : 10000000
Data : [("." 0),(".." 0),("f" 1)] [] [] [] [] [] []
```

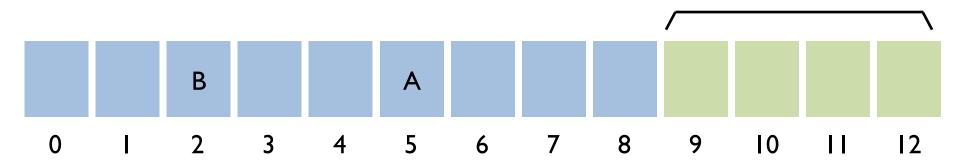
Operation that caused this change?

BUNNY 18

(f) FILE SYSTEM STATE: Consistent or inconsistent? If inconsistent, how to fix?

Inode Bitmap : 11100000
Inode Table : [size=1,ptr=0,type=d] [size=1,ptr=1,type=r] [size=1,ptr=2,type=r] [] [] [] []
Data Bitmap : 11100000
Data : [("." 0),(".." 0)] [DATA] [DATA] [] [] [] []

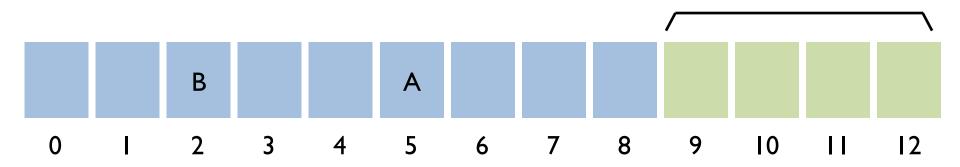
CONSISTENCY SOLUTION #2: JOURNALING


Goals

- Ok to do some **recovery work** after crash, but not to read entire disk
- Don't move file system to just any consistent state, get **correct** state

Atomicity

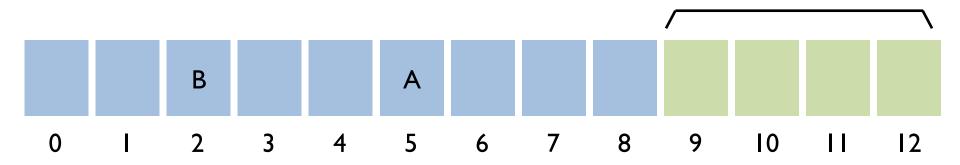
- Definition of atomicity for concurrency: operations in critical sections are not interrupted by operations on related critical sections
- Definition of atomicity for **persistence:** collections of writes are not interrupted by crashes; either (all new) or (all old) data is visible


ORDERING FOR CONSISTENCY

transaction: write C to block 4; write T to block 6

write order

ORDERING FOR CONSISTENCY

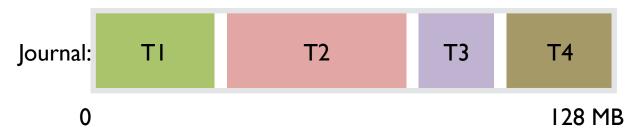

Barriers

- I) Before journal commit, ensure journal entries complete
- 2) Before checkpoint, ensure journal commit complete
- 3) Before free journal, ensure in-place updates complete

write order 9,10,11 12 4,6 12

CHECKSUM OPTIMIZATION

Can we get rid of barrier between (9, 10, 11) and 12?

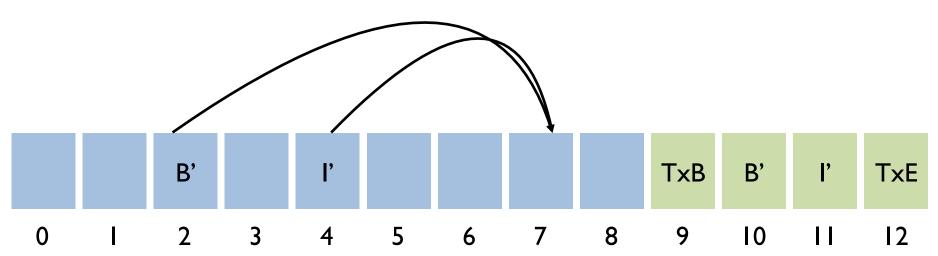

In last transaction block, store checksum	write order before		
of rest of transaction	9,10,11		
	12		
During recovery: If checksum does not	4,6		
match, treat as not valid	12		

OTHER OPTIMIZATIONS

Batched updates

- If two files are created, inode bitmap, inode etc. get written twice
- Mark as dirty in-memory and batch updates

Circular log


HOW TO AVOID WRITING ALL DISK BLOCKS TWICE?

Observation: Most of writes are user data (esp sequential writes)

Strategy: journal all metadata, including superblock, bitmaps, inodes, indirects, directories

For regular data, write it back whenever convenient.

METADATA JOURNALING

transaction: append to inode I

Crash !!!

ORDERED JOURNALING

Still only journal metadata

But write data **before** the transaction!

ORDERED JOURNAL

What happens if crash now? B indicates D currently free, I does not point to D; Lose D, but that might be acceptable

SUMMARY

Crash consistency: Important problem in filesystem design!

Two main approaches FSCK:

> Fix file system image after crash happens Too slow and only ensures consistency

Journaling

Write a transaction before in-place updates Checksum, batching Ordered journal avoids data writes

BUNNY 19: IDENTIFY THE KIND OF JOURNALING

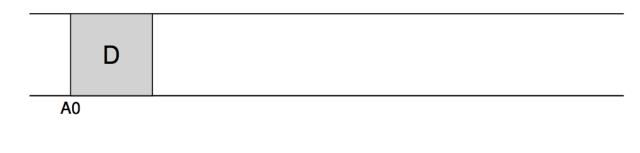
https://tinyurl.com/cs537-sp19-bunny19

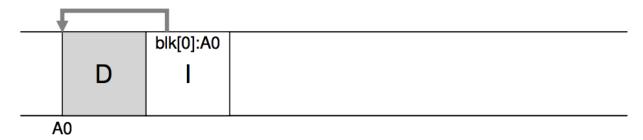
We need to write data in block 5,6. Inode is block 4, bitmap in block 2. Journal is from blocks 8 to 15

Write 5,6 Write 8, 9, 10 Barrier Write 11 Barrier Write 4, 2 Write 8, 9, 10,11,12 Barrier Write 13 Barrier Write 2,4,5,6 Write 8, 9, 10,11,12,13 Barrier Write 2,4,5,6

LOG STRUCTURED FILE SYSTEM (LFS)

LFS PERFORMANCE GOAL


Motivation:

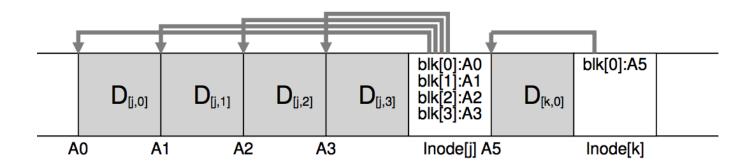

- Growing gap between sequential and random I/O performance
- RAID-5 especially bad with small random writes

Idea: use disk purely sequentially

Design for writes to use disk sequentially – how?

WHERE DO INODES GO?

LFS STRATEGY


File system buffers writes in main memory until "enough" data

- How much is enough?
- Enough to get good sequential bandwidth from disk (MB)

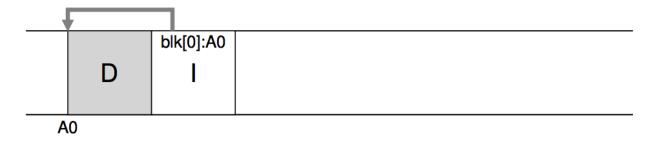
Write buffered data sequentially to new **segment** on disk

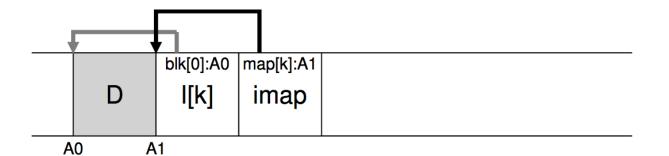
Never overwrite old info: old copies left behind

BUFFERED WRITES

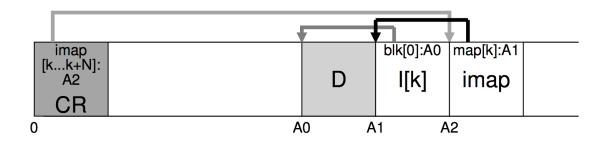
WHAT ELSE IS DIFFERENT FROM FFS?

What data structures has LFS removed?

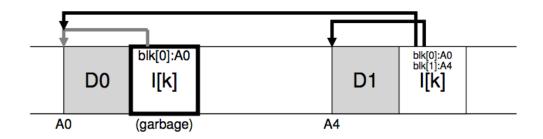

allocation structs: data + inode bitmaps


How to do reads?

Inodes are no longer at fixed offset


Use imap structure to map: inode number => inode location on disk

IMAP EXPLAINED



READING IN LFS

- I. Read the Checkpoint region
- 2. Read all imap parts, cache in mem
- 3. To read a file:
 - I. Lookup inode location in imap
 - 2. Read inode
 - 3. Read the file block

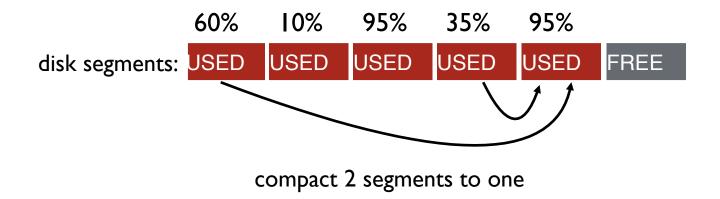
WHAT TO DO WITH OLD DATA?

Old versions of files \rightarrow garbage

Approach I: garbage is a feature!

- Keep old versions in case user wants to revert files later
- Versioning file systems
- Example: Dropbox

Approach 2: garbage collection


Need to reclaim space:

- I.When no more references (any file system)
- 2. After newer copy is created (COW file system)

LFS reclaims segments (not individual inodes and data blocks)

- Want future overwites to be to sequential areas
- Tricky, since segments are usually partly valid

When moving data blocks, copy new inode to point to it When move inode, update imap to point to it

General operation:

Pick M segments, compact into N (where N < M).

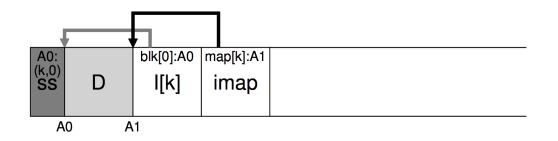
Mechanism:

How does LFS know whether data in segments is valid?

Policy:

Which segments to compact?

GARBAGE COLLECTION MECHANISM


Is an inode the latest version?

- Check imap to see if this inode is pointed to
- Fast!
- Is a data block the latest version?
 - Scan ALL inodes to see if any point to this data
 - Very slow!

How to track information more efficiently?

 Segment summary lists inode and data offset corresponding to each data block in segment (reverse pointers)

SEGMENT SUMMARY


```
(N, T) = SegmentSummary[A];
```

```
inode = Read(imap[N]);
```

```
// block D is garbage
```

General operation:

Pick M segments, compact into N (where N < M).

Mechanism:

Use segment summary, imap to determine liveness

Policy:

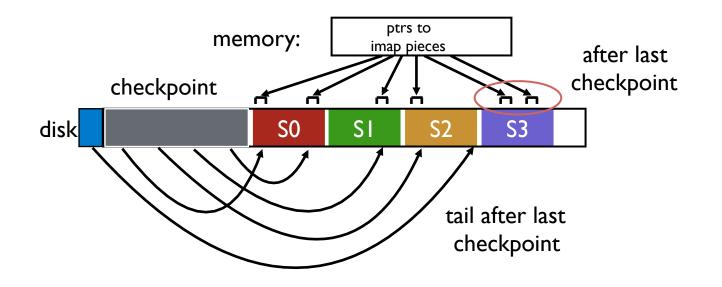
Which segments to compact?

- clean most empty first
- clean coldest (ones undergoing least change)
- more complex heuristics...

CRASH RECOVERY

What data needs to be recovered after a crash?

Need imap (lost in volatile memory)


Better approach?

- Occasionally save to checkpoint region the pointers to imap pieces

How often to checkpoint?

- Checkpoint often: random I/O
- Checkpoint rarely: lose more data, recovery takes longer
- Example: checkpoint every 30 secs

CRASH RECOVERY

CHECKPOINT SUMMARY

Checkpoint occasionally (e.g., every 30s)

Upon recovery:

- read checkpoint to find most imap pointers and segment tail
- find rest of imap pointers by reading past tail

What if crash <u>during</u> checkpoint?

CHECKPOINT STRATEGY

Have two checkpoint regions

Only overwrite one checkpoint at a time

Use checksum/timestamps to identify newest checkpoint

LFS SUMMARY

Journaling:

Put final location of data wherever file system chooses (usually in a place optimized for future reads)

LFS:

Puts data where it's fastest to write, assume future reads cached in memory

Other COW file systems: WAFL, ZFS, btrfs

NEXT STEPS

Next class: Distributed systems

Project 5 is out! Discussion: Project 5 walkthrough