CONCURRENCY: LOCKS

Shivaram Venkataraman
CS 537, Spring 2019

ADMINISTRIVIA

- Project 2b is due Wed Feb 27, | [:59pm
- Project 2a grades out by tonight

AGENDA / LEARNING OUTCOMES

Concurrency
What are some of the challenges in concurrent execution?

How do we design locks to address this!?

RECAP

MOTIVATION FOR CONCURRENCY ez

Performance (vs. VAX-11/780)

100,000 ulemdcofeoaseHz(Booa!odoeﬂz)
Intel Xeon 4 cores 3.6 GHz (Boost to 4.0 GHz)
Intel Core i7 4 cores 3.4 GHz (boost to 3.8 GHz)
Intel Xeon 6 cores, 3.3 GHz (boost to 3.6 GHz)
Intel Xeon 4 cores, 3.3 GHz (boost 1o 3.6 GHz)
Intel Core i7 Extreme 4 cores 3.2 GHz (boost to 3.5 GHz)

Intel Core Duo Extreme 2 cores, 3.0 GHz 2187

Intel Core 2 Extrome 2 cores, 2.9 GHz - 341
10.000 5 M"Aml M%‘GHZGHZ -- -“&' 15:‘&.

AMD
Intel Xeon EE 3.2 GHz
Intel DBSOEMVR motherboard (3.06 GHz, Pentium 4 processor with Hyper-Threading Technology) g 6,043
IBM Powerd, 1.3 GHz @~* 4,195
Intel VC820 motherboard, 1.0 GHz Pentium il processor 1'77:”“
Professional Workstation XP1000, 667 MHz 21264A '
111 1 I Digital AlphaServer 8400 6/575. 575 MHz 21264 '.555
AlphaServer 4000 5/600, 600 MHz 21164 .
Digital Alphastation 5/500, 500 MHz & -

849
a8
Digital Aiphastation 5/300, 300 MHz @ 42
Digital Alphastation 4/266, 266 MHz _,.l-ém 23%lyear
o o_____.IBMPOWERStation 100, 150 Mtz ,.:.'l:t?.
Digtal 3000 AXP/500, 150 MHz @
HP 9000/750, 66 MHz g~

8

/=51
IBM RS6000/540, 30 MHz_ 4 54 52%lyear
MIPS M2000, 25 MHz_grg
MIPS M/120, 16.7 MHz @77
10 17T Sunaizeo, 67 Mz Mg T
VAX 8700, 22 MHz g5
AX-11/780, 5 MHz
25%lyear

1 M T 1 1 L Ll T T 1 l Ll 1 1

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018

Thread |
mov 0x 123, %eax
add %0x|, %eax

mov %eax, 0x 123

TIMELINE VIEW

Thread 2

mov 0x 123, %eax
add %0x2, %eax

mov %eax, 0x 123

Thread |
mov 0x 123, %eax

add %0x |, %eax

mov %eax, 0x 123

TIMELINE VIEW

Thread 2

mov 0x 123, %eax
add %0x2, %eax

mov %eax, 0x 123

NON-DETERMINISM

Concurrency leads to non-deterministic results
— Different results even with same inputs
— race conditions

Whether bug manifests depends on CPU schedule!

How to program: imagine scheduler is malicious?!

WHAT DO WE WANT?

Want 3 instructions to execute as an uninterruptable group

That is, we want them to be atomic

mov O0x123, %eax
add %0x1, %eax
mov %eax, ©0x123

More general: Need mutual exclusion for critical sections
if thread A is in critical section C, thread B isn’t
(okay if other threads do unrelated work)

SYNCHRONIZATION

Build higher-level synchronization primitives in OS
Operations that ensure correct ordering of instructions across threads
Use help from hardware

Motivation: Build them once and get them right

Monitors
Locks Semaphores

Condition Variables

Loads Test&Set

Stores
Disable Interrupts

CONCURRENCY SUMMARY

Concurrency is needed for high performance when using multiple cores

Threads are multiple execution streams within a single process or address
space (share PID and address space, own registers and stack)

Context switches within a critical section can lead to non-deterministic bugs

LOCKS

LOCKS

Goal: Provide mutual exclusion (mutex)

Allocate and Initialize
— Pthread mutex_t mylock = PTHREAD_ MUTEX_INITIALIZER;
Acquire
— Acquire exclusion access to lock;
— Wit if lock is not available (some other process in critical section)
— Spin or block (relinquish CPU) while waiting
— Pthread mutex_lock(&mylock);
Release
— Release exclusive access to lock; let another process enter critical section
— Pthread mutex_unlock(&mylock);

LOCK IMPLEMENTATION GOALS

Correctness
— Mutual exclusion
Only one thread in critical section at a time
— Progress (deadlock-free)
If several simultaneous requests, must allow one to proceed
— Bounded (starvation-free)
Must eventually allow each waiting thread to enter

Fairness: Each thread waits for same amount of time

Performance: CPU is not used unnecessarily

IMPLEMENTING SYNCHRONIZATION

Atomic operation: No other instructions can be interleaved

Approaches
- Disable interrupts
- Locks using loads/stores

- Using special hardware instructions

IMPLEMENTING LOCKS: W/ INTERRUPTS

Turn off interrupts for critical sections
- Prevent dispatcher from running another thread
- Code between interrupts executes atomically

void acquire(lockT *1) { void release(lockT *1) {
disableInterrupts(); enableInterrupts();

} }

Disadvantages!
Only works on uniprocessors
Process can keep control of CPU for arbitrary length
Cannot perform other necessary work

IMPLEMENTING LOCKS: W/ LOAD+STORE

Code uses a single shared lock variable

// shared variable
boolean lock = false;

void acquire(Boolean *lock) { void release(Boolean *lock) {
while (*lock) /* wait */ ; *lock = false;
*lock = true; }

}

Does this work? What situation can cause this to not work!?

LOCKS WITH VARIABLE DEMO

RACE CONDITION WITH LOAD AND STORE

*lock == 0 initially

Thread 1 Thread 2

while(*lock == 1)
while(*lock == 1)
*lock =1

*lock =1

Both threads grab lock!
Problem: Testing lock and setting lock are not atomic

XGHG: ATOMIC EXCHANGE OR TEST-AND-SET

How do we solve this ? Get help from the hardware!

// xchg(int *addr, int newval)
// return what was pointed to by addr
// at the same time, store newval into addr
int xchg(int *addr, int newval) {
int old = *xaddr;
*xaddr = newval;
return old;

}

LOCK IMPLEMENTATION WITH XCHG

typedef struct lock t {
int flag;
} lock t;

void init(lock t *lock) {
lock->flag = ??;
}

void acquire(lock t *lock) {
??2?27;

// spin-wait (do nothing)
}

void release(lock t *lock) {
lock->flag = ?2?;

}

int xchg(int *addr, int newval)

DEMO XCHG

OTHER ATOMIC HW INSTRUCTIONS

int CompareAndSwap(int *addr, int expected, int new) {
int actual = *addr;
if (actual == expected)
*addr = new;
return actual;

}

void acquire(lock t *lock) {
while(CompareAndSwap(&lock->flag, ,) ==) ;
// spin-wait (do nothing)

XGHG, CAS

a=|

int b = xchg(&a, 2)

int ¢ = CompareAndSwap(&b, 2, 3)
int d = CompareAndSwap(&b, 1, 3)

LOCK IMPLEMENTATION GOALS

Correctness
— Mutual exclusion
Only one thread in critical section at a time
— Progress (deadlock-free)
If several simultaneous requests, must allow one to proceed
— Bounded (starvation-free)
Must eventually allow each waiting thread to enter

Fairness: Each thread waits for same amount of time

Performance: CPU is not used unnecessarily

BASIC SPINLOGKS ARE UNFAIR

unlock lock unlock lock unlock lock unlock lock

lock

i B B

0 20 40 60 80 100 120 140 160

Scheduler is unaware of locks/unlocks!

FAIRNESS: TICKET LOCKS

Idea: reserve each thread’s turn to use a lock.
Each thread spins until their turn.

Use new atomic primitive, fetch-and-add
int FetchAndAdd(int *ptr) {
int old = *ptr;
*ptr = old + 1;
return old;

}

Acquire: Grab ticket; Spin while not thread’s ticket != turn

Release: Advance to next turn

A lock():
B lock():
C lock():

A unlock():

A lock():

B unlock():

C unlock():
A unlock():

TICKET LOCK EXAMPLE

Ticket

Turn

TICKET LOCK IMPLEMENTATION

typedef struct _ lock _t {
int ticket;
int turn;

}

void lock_init(lock t *lock) {
lock->ticket = 0;
lock->turn = 0;

void acquire(lock t *lock) {
int myturn = FAA(&lock->ticket);
// spin
while (lock->turn != myturn);

¥

void release(lock t *1lock) {
FAA(&lock->turn);

}

SPINLOCK PERFORMANGE

Fast when...

- many CPUs

- locks held a short time

- advantage: avoid context switch

Slow when...

- one CPU

- locks held a long time

- disadvantage: spinning is wasteful

CPU SCHEDULER IS IGNORANT

lock unlock lock

~ BN o KN 4 BN |

120 160

CPU scheduler may run B, C, D instead of A
even though B, C, D are waiting for A

TICKET LOCK WITH YIELD

typedef struct _ lock _t { void acquire(lock t *1lock) {
int ticket; int myturn = FAA(&lock->ticket);
int turn; while (lock->turn != myturn)
} yield();
}

void lock_init(lock t *lock) {
lock->ticket = 0; void release(lock t *lock) {
lock->turn = 9; FAA(&lock->turn);

YIELD INSTEAD OF SPIN

lock unlock lock

100 120 160

lock unlock lock

- T =1
0 20 40 60

80 100 120 140 160

\

https: //tmyurl com/cs537 sp f9 bunny5

A

.) ‘8 \ .J.x.. INA\ LAV GA »
Assuming round robin schedullng, IOms time slice
Processes A,B,C,D,E,F G, H, |,] in the system

Timeline

A:lock() ... compute ... unlock()
B: Iock() ... compute ... unlock()

‘F%E
@

m

YIELD VS SPIN

Assuming round robin scheduling, |0ms time slice
Processes A,B,C,D,E,F G, H, |,] in the system

Timeline
A:lock() ... compute ... unlock()

B:lock() ... compute ... unlock()
C:lock()

If A’s compute is 20ms long, starting at t = 0, when does B get lock with spin ?
If B’s compute is 30ms long, when does C get lock with spin ?

If context switch time = Ims, when does B get lock with yield ?

SPINLOCK PERFORMANGE

Waste of CPU cycles!?
Without yield: O(threads * time_slice)
With yield: O(threads * context_switch)

Even with yield, spinning is slow with high thread contention

Next improvement: Block and put thread on waiting queue instead of spinning

LOCK IMPLEMENTATION: BLOCK WHEN WAITING

Remove waiting threads from scheduler ready queue
(e.g., park() and unpark(threadID))

Scheduler runs any thread that is ready

RUNNABLE: A,B,C,D
RUNNING:
WAITING:

0 20 40 60 80 100 120 140 160

LOCK IMPLEMENTATION: BLOCK WHEN WAITING

void acquire(LockT *1) {
while (XCHG(&l->guard, true));
typedef struct
yp uct { if (1->lock) {

bool lock = false; gadd(1->q, tid);
1->guard = false;
} LockT; b else {

! 1->lock = true;
1->guard = false;

bool guard = false;

}

void release(LockT *1) {
while (XCHG(&L->guard, true));
if (gempty(l->q)) 1l->lock=false;
else unpark(gremove(l->q));
1->guard = false;

LOCK IMPLEMENTATION: BLOCK WHEN WAITING

(@) Why is guard used?

(b) Why okay to spin on guard?

(c) In release(), why not set lock=false when
unpark?

(d) Is there a race condition?

void acquire(LockT *1) {
while (XCHG(&l->guard, true));
if (1->lock) {
gadd(1l->q, tid);
1->guard = false;
park(); // blocked
} else {
1->lock = true;
1->guard = false;

}

void release(LockT *1) {
while (XCHG(&L->guard, true));
if (gempty(l->q)) 1l->lock=false;
else unpark(gremove(l->q));
1->guard = false;

}

RACE CONDITION

Thread 1 (in lock) Thread 2
if (1->lock) {

gadd(1l->q, tid);

1->guard = false;

(in unlock)

while (TAS(&1l->guard, true));
if (qgempty(1l->q)) // false!!
else unpark(gremove(l->q));
1->guard = false;

park(); // block

BLOCK WHEN WAITING: FINAL CORRECT LOCK

typedef struct {
bool lock = false;
bool guard = false;
queue t qgj;

} LockT;

setpark() fixes race condition

void acquire(LockT *1) {
while (TAS(&l->guard, true));
if (1->lock) {
gadd(1l->q, tid);
setpark(); // notify of plan
1->guard = false;
park(); // unless unpark()
} else {
1->lock = true;
1->guard = false;
}
}
void release(LockT *1) {
while (TAS(&1l->guard, true));
if (gempty(l->q)) 1l->lock=false;
else unpark(gremove(l->q));
1->guard = false;

SPIN-WAITING VS BLOCKING

Each approach is better under different circumstances
Uniprocessor
Waiting process is scheduled = Process holding lock isn’t
Wiaiting process should always relinquish processor
Associate queue of waiters with each lock (as in previous implementation)
Multiprocessor
Waiting process is scheduled = Process holding lock might be
Spin or block depends on how long, t, before lock is released
Lock released quickly = Spin-wait
Lock released slowly = Block

Quick and slow are relative to context-switch cost, C

WHEN TO SPIN-WAIT? WHEN TO BLOCK?

If know how long, t, before lock released, can determine optimal behavior
How much CPU time is wasted when spin-waiting?

t
How much wasted when block?
What is the best action when t<C?

When t>C?

Problem:
Requires knowledge of future; too much overhead to do any special prediction

TWO-PHASE WAITING

Theory: Bound worst-case performance; ratio of actual/optimal
When does worst-possible performance occur?
Spin for very long time t >> C
Ratio: t/C (unbounded)
Algorithm: Spin-wait for C then block = Factor of 2 of optimal
Two cases:
t < C: optimal spin-waits for t; we spin-wait t too
t > C: optimal blocks immediately (cost of C);
we pay spin C then block (cost of 2 C);
2C / C 2 2-competitive algorithm

NEXT STEPS

Project 2b: Due tomorrow!

Next class: Condition Variables

