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ADMINISTRIVIA

- Project 2b is due Wed Feb 27, | [:59pm
- Project 2a grades out by tonight



AGENDA / LEARNING OUTCOMES

Concurrency
What are some of the challenges in concurrent execution?

How do we design locks to address this!?
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Thread |
mov 0x 123, %eax
add %0x|, %eax

mov %eax, 0x 123

TIMELINE VIEW

Thread 2

mov 0x 123, %eax
add %0x2, %eax

mov %eax, 0x 123



Thread |
mov 0x 123, %eax

add %0x |, %eax

mov %eax, 0x 123

TIMELINE VIEW

Thread 2

mov 0x 123, %eax
add %0x2, %eax

mov %eax, 0x 123



NON-DETERMINISM

Concurrency leads to non-deterministic results
— Different results even with same inputs
— race conditions

Whether bug manifests depends on CPU schedule!

How to program: imagine scheduler is malicious?!



WHAT DO WE WANT?

Want 3 instructions to execute as an uninterruptable group

That is, we want them to be atomic

mov O0x123, %eax
add %0x1, %eax
mov %eax, ©0x123

More general: Need mutual exclusion for critical sections
if thread A is in critical section C, thread B isn’t
(okay if other threads do unrelated work)



SYNCHRONIZATION

Build higher-level synchronization primitives in OS
Operations that ensure correct ordering of instructions across threads
Use help from hardware

Motivation: Build them once and get them right

Monitors
Locks Semaphores

Condition Variables

Loads Test&Set

Stores
Disable Interrupts




CONCURRENCY SUMMARY

Concurrency is needed for high performance when using multiple cores

Threads are multiple execution streams within a single process or address
space (share PID and address space, own registers and stack)

Context switches within a critical section can lead to non-deterministic bugs



LOCKS



LOCKS

Goal: Provide mutual exclusion (mutex)

Allocate and Initialize
— Pthread mutex_t mylock = PTHREAD_ MUTEX_INITIALIZER;
Acquire
— Acquire exclusion access to lock;
— Wit if lock is not available (some other process in critical section)
— Spin or block (relinquish CPU) while waiting
— Pthread mutex_lock(&mylock);
Release
— Release exclusive access to lock; let another process enter critical section
— Pthread mutex_unlock(&mylock);



LOCK IMPLEMENTATION GOALS

Correctness
— Mutual exclusion
Only one thread in critical section at a time
— Progress (deadlock-free)
If several simultaneous requests, must allow one to proceed
— Bounded (starvation-free)
Must eventually allow each waiting thread to enter

Fairness: Each thread waits for same amount of time

Performance: CPU is not used unnecessarily



IMPLEMENTING SYNCHRONIZATION

Atomic operation: No other instructions can be interleaved

Approaches
- Disable interrupts
- Locks using loads/stores

- Using special hardware instructions



IMPLEMENTING LOCKS: W/ INTERRUPTS

Turn off interrupts for critical sections
- Prevent dispatcher from running another thread
- Code between interrupts executes atomically

void acquire(lockT *1) { void release(lockT *1) {
disableInterrupts(); enableInterrupts();

} }

Disadvantages!
Only works on uniprocessors
Process can keep control of CPU for arbitrary length
Cannot perform other necessary work



IMPLEMENTING LOCKS: W/ LOAD+STORE

Code uses a single shared lock variable

// shared variable
boolean lock = false;

void acquire(Boolean *lock) { void release(Boolean *lock) {
while (*lock) /* wait */ ; *lock = false;
*lock = true; }

}

Does this work? What situation can cause this to not work!?



LOCKS WITH VARIABLE DEMO



RACE CONDITION WITH LOAD AND STORE

*lock == 0 initially

Thread 1 Thread 2

while(*lock == 1)
while(*lock == 1)
*lock =1

*lock =1

Both threads grab lock!
Problem: Testing lock and setting lock are not atomic



XGHG: ATOMIC EXCHANGE OR TEST-AND-SET

How do we solve this ? Get help from the hardware!

// xchg(int *addr, int newval)
// return what was pointed to by addr
// at the same time, store newval into addr
int xchg(int *addr, int newval) {
int old = *xaddr;
*xaddr = newval;
return old;

}



LOCK IMPLEMENTATION WITH XCHG

typedef struct  lock t {
int flag;
} lock t;

void init(lock t *lock) {
lock->flag = ??;
}

void acquire(lock t *lock) {
??2?27;

// spin-wait (do nothing)
}

void release(lock t *lock) {
lock->flag = ?2?;

}

int xchg(int *addr, int newval)



DEMO XCHG



OTHER ATOMIC HW INSTRUCTIONS

int CompareAndSwap(int *addr, int expected, int new) {
int actual = *addr;
if (actual == expected)
*addr = new;
return actual;

}

void acquire(lock t *lock) {
while(CompareAndSwap(&lock->flag, , ) == ) ;
// spin-wait (do nothing)






XGHG, CAS

a=|

int b = xchg(&a, 2)

int ¢ = CompareAndSwap(&b, 2, 3)
int d = CompareAndSwap(&b, 1, 3)



LOCK IMPLEMENTATION GOALS

Correctness
— Mutual exclusion
Only one thread in critical section at a time
— Progress (deadlock-free)
If several simultaneous requests, must allow one to proceed
— Bounded (starvation-free)
Must eventually allow each waiting thread to enter

Fairness: Each thread waits for same amount of time

Performance: CPU is not used unnecessarily



BASIC SPINLOGKS ARE UNFAIR

unlock lock unlock lock unlock lock unlock lock

lock
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Scheduler is unaware of locks/unlocks!



FAIRNESS: TICKET LOCKS

Idea: reserve each thread’s turn to use a lock.
Each thread spins until their turn.

Use new atomic primitive, fetch-and-add
int FetchAndAdd(int *ptr) {
int old = *ptr;
*ptr = old + 1;
return old;

}

Acquire: Grab ticket; Spin while not thread’s ticket != turn

Release: Advance to next turn



A lock():
B lock():
C lock():

A unlock():

A lock():

B unlock():

C unlock():
A unlock():

TICKET LOCK EXAMPLE

Ticket

Turn




TICKET LOCK IMPLEMENTATION

typedef struct _ lock _t {
int ticket;
int turn;

}

void lock_init(lock t *lock) {
lock->ticket = 0;
lock->turn = 0;

void acquire(lock t *lock) {
int myturn = FAA(&lock->ticket);
// spin
while (lock->turn != myturn);

¥

void release(lock t *1lock) {
FAA(&lock->turn);

}



SPINLOCK PERFORMANGE

Fast when...

- many CPUs

- locks held a short time

- advantage: avoid context switch

Slow when...

- one CPU

- locks held a long time

- disadvantage: spinning is wasteful



CPU SCHEDULER IS IGNORANT

lock unlock lock
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CPU scheduler may run B, C, D instead of A
even though B, C, D are waiting for A



TICKET LOCK WITH YIELD

typedef struct _ lock _t { void acquire(lock t *1lock) {
int ticket; int myturn = FAA(&lock->ticket);
int turn; while (lock->turn != myturn)
} yield();
}

void lock_init(lock t *lock) {
lock->ticket = 0; void release(lock t *lock) {
lock->turn = 9; FAA(&lock->turn);




YIELD INSTEAD OF SPIN

lock unlock lock
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YIELD VS SPIN

Assuming round robin scheduling, |0ms time slice
Processes A,B,C,D,E,F G, H, |,] in the system

Timeline
A:lock() ... compute ... unlock()

B:lock() ... compute ... unlock()
C:lock()

If A’s compute is 20ms long, starting at t = 0, when does B get lock with spin ?
If B’s compute is 30ms long, when does C get lock with spin ?

If context switch time = Ims, when does B get lock with yield ?



SPINLOCK PERFORMANGE

Waste of CPU cycles!?
Without yield: O(threads * time_slice)
With yield: O(threads * context_switch)

Even with yield, spinning is slow with high thread contention

Next improvement: Block and put thread on waiting queue instead of spinning



LOCK IMPLEMENTATION: BLOCK WHEN WAITING

Remove waiting threads from scheduler ready queue
(e.g., park() and unpark(threadID))

Scheduler runs any thread that is ready



RUNNABLE: A,B,C,D
RUNNING:
WAITING:

0 20 40 60 80 100 120 140 160



LOCK IMPLEMENTATION: BLOCK WHEN WAITING

void acquire(LockT *1) {
while (XCHG(&l->guard, true));
typedef struct
yp uct { if (1->lock) {

bool lock = false; gadd(1->q, tid);
1->guard = false;
} LockT; b else {

! 1->lock = true;
1->guard = false;

bool guard = false;

}

void release(LockT *1) {
while (XCHG(&L->guard, true));
if (gempty(l->q)) 1l->lock=false;
else unpark(gremove(l->q));
1->guard = false;



LOCK IMPLEMENTATION: BLOCK WHEN WAITING

(@) Why is guard used?

(b) Why okay to spin on guard?

(c) In release(), why not set lock=false when
unpark?

(d) Is there a race condition?

void acquire(LockT *1) {
while (XCHG(&l->guard, true));
if (1->lock) {
gadd(1l->q, tid);
1->guard = false;
park(); // blocked
} else {
1->lock = true;
1->guard = false;

}

void release(LockT *1) {
while (XCHG(&L->guard, true));
if (gempty(l->q)) 1l->lock=false;
else unpark(gremove(l->q));
1->guard = false;

}



RACE CONDITION

Thread 1 (in lock) Thread 2
if (1->lock) {

gadd(1l->q, tid);

1->guard = false;

(in unlock)

while (TAS(&1l->guard, true));
if (qgempty(1l->q)) // false!!
else unpark(gremove(l->q));
1->guard = false;

park(); // block



BLOCK WHEN WAITING: FINAL CORRECT LOCK

typedef struct {
bool lock = false;
bool guard = false;
queue t qgj;

} LockT;

setpark() fixes race condition

void acquire(LockT *1) {
while (TAS(&l->guard, true));
if (1->lock) {
gadd(1l->q, tid);
setpark(); // notify of plan
1->guard = false;
park(); // unless unpark()
} else {
1->lock = true;
1->guard = false;
}
}
void release(LockT *1) {
while (TAS(&1l->guard, true));
if (gempty(l->q)) 1l->lock=false;
else unpark(gremove(l->q));
1->guard = false;



SPIN-WAITING VS BLOCKING

Each approach is better under different circumstances
Uniprocessor
Waiting process is scheduled = Process holding lock isn’t
Wiaiting process should always relinquish processor
Associate queue of waiters with each lock (as in previous implementation)
Multiprocessor
Waiting process is scheduled = Process holding lock might be
Spin or block depends on how long, t, before lock is released
Lock released quickly = Spin-wait
Lock released slowly = Block

Quick and slow are relative to context-switch cost, C



WHEN TO SPIN-WAIT? WHEN TO BLOCK?

If know how long, t, before lock released, can determine optimal behavior
How much CPU time is wasted when spin-waiting?

t
How much wasted when block?
What is the best action when t<C?

When t>C?

Problem:
Requires knowledge of future; too much overhead to do any special prediction



TWO-PHASE WAITING

Theory: Bound worst-case performance; ratio of actual/optimal
When does worst-possible performance occur?
Spin for very long time t >> C
Ratio: t/C (unbounded)
Algorithm: Spin-wait for C then block = Factor of 2 of optimal
Two cases:
t < C: optimal spin-waits for t; we spin-wait t too
t > C: optimal blocks immediately (cost of C);
we pay spin C then block (cost of 2 C);
2C / C 2 2-competitive algorithm



NEXT STEPS

Project 2b: Due tomorrow!

Next class: Condition Variables



