
CONCURRENCY: LOCKS

Shivaram Venkataraman
CS 537, Spring 2019

ADMINISTRIVIA

-  Project 2b is due Wed Feb 27th, 11:59pm
-  Project 2a grades out by tonight

AGENDA / LEARNING OUTCOMES

Concurrency
 What are some of the challenges in concurrent execution?
 How do we design locks to address this?

RECAP

Motivation for Concurrency

TIMELINE VIEW

Thread 1 Thread 2
mov 0x123, %eax
add %0x1, %eax
mov %eax, 0x123

mov 0x123, %eax
add %0x2, %eax
mov %eax, 0x123

TIMELINE VIEW

Thread 1 Thread 2
mov 0x123, %eax

mov 0x123, %eax
add %0x2, %eax
mov %eax, 0x123

add %0x1, %eax
mov %eax, 0x123

Non-Determinism

Concurrency leads to non-deterministic results
–  Different results even with same inputs
–  race conditions

Whether bug manifests depends on CPU schedule!

How to program: imagine scheduler is malicious?!

What do we want?

Want 3 instructions to execute as an uninterruptable group
That is, we want them to be atomic

mov	0x123,	%eax	
add	%0x1,	%eax	
mov	%eax,	0x123	

More general: Need mutual exclusion for critical sections
 if thread A is in critical section C, thread B isn’t
 (okay if other threads do unrelated work)

Synchronization

Build higher-level synchronization primitives in OS
Operations that ensure correct ordering of instructions across threads
Use help from hardware

Motivation: Build them once and get them right

Monitors Semaphores
Condition Variables

Locks

Loads
Stores

Test&Set
Disable Interrupts

CONCURRENCY SUMMARY

Concurrency is needed for high performance when using multiple cores

Threads are multiple execution streams within a single process or address
space (share PID and address space, own registers and stack)

Context switches within a critical section can lead to non-deterministic bugs

LOCKS

Locks
Goal: Provide mutual exclusion (mutex)

Allocate and Initialize
–  Pthread_mutex_t mylock = PTHREAD_MUTEX_INITIALIZER;

Acquire
–  Acquire exclusion access to lock;
–  Wait if lock is not available (some other process in critical section)
–  Spin or block (relinquish CPU) while waiting
–  Pthread_mutex_lock(&mylock);

Release
–  Release exclusive access to lock; let another process enter critical section
–  Pthread_mutex_unlock(&mylock);

Lock Implementation Goals

Correctness
–  Mutual exclusion
 Only one thread in critical section at a time
–  Progress (deadlock-free)
 If several simultaneous requests, must allow one to proceed
–  Bounded (starvation-free)
 Must eventually allow each waiting thread to enter

Fairness: Each thread waits for same amount of time
Performance: CPU is not used unnecessarily

Implementing Synchronization

Atomic operation: No other instructions can be interleaved

Approaches

 - Disable interrupts
 - Locks using loads/stores
 - Using special hardware instructions

Implementing Locks: W/ Interrupts

Turn off interrupts for critical sections
- Prevent dispatcher from running another thread
- Code between interrupts executes atomically

Disadvantages?
 Only works on uniprocessors
 Process can keep control of CPU for arbitrary length
 Cannot perform other necessary work

void acquire(lockT *l) {  
disableInterrupts();  

}

void	release(lockT	*l)	{	
	enableInterrupts();	

}	

Implementing LOCKS: w/ Load+Store

Code uses a single shared lock variable

void	release(Boolean	*lock)	{	
	*lock	=	false;	

}	

//	shared	variable	
boolean	lock	=	false;	
void	acquire(Boolean	*lock)	{	

	while	(*lock)	/*	wait	*/	;	
	*lock	=	true;	

}	

Does this work? What situation can cause this to not work?

LOCKS WITH VARIABLE DEMO

Race Condition with LOAD and STORE

*lock == 0 initially

Thread 1 Thread 2
while(*lock == 1)

while(*lock == 1)
*lock = 1

*lock = 1

Both threads grab lock!
Problem: Testing lock and setting lock are not atomic

xchg: atomic exchange or test-and-set

// xchg(int *addr, int newval) !
// return what was pointed to by addr !
// at the same time, store newval into addr !
int xchg(int *addr, int newval) { !
int old = *addr; !
*addr = newval; !
return old; !

} !

How do we solve this ? Get help from the hardware!

LOCK Implementation with XCHG

typedef struct __lock_t {
int flag;

} lock_t;

void init(lock_t *lock) {
lock->flag = ??;

}

void acquire(lock_t *lock) {
????;
// spin-wait (do nothing)

}

void release(lock_t *lock) {
lock->flag = ??;

}

int xchg(int *addr, int newval)

DEMO XCHG

Other Atomic HW Instructions
int	CompareAndSwap(int	*addr,	int	expected,	int	new)	{	
	int	actual	=	*addr;	
	if	(actual	==	expected)		
	 	*addr	=	new;	
	return	actual;	
}																																																							

void	acquire(lock_t	*lock)	{		
	while(CompareAndSwap(&lock->flag,		,)	==)	;		
	//	spin-wait	(do	nothing)		

}	

tinyurl.com/cs537-sp19-bunny4 a = 1
int b = xchg(&a, 2)
int c = CompareAndSwap(&b, 2, 3)
int d = CompareAndSwap(&b, 1, 3)

XCHG, CAS

a = 1
int b = xchg(&a, 2)
int c = CompareAndSwap(&b, 2, 3)
int d = CompareAndSwap(&b, 1, 3)

Lock Implementation Goals

Correctness
–  Mutual exclusion
 Only one thread in critical section at a time
–  Progress (deadlock-free)
 If several simultaneous requests, must allow one to proceed
–  Bounded (starvation-free)
 Must eventually allow each waiting thread to enter

Fairness: Each thread waits for same amount of time
Performance: CPU is not used unnecessarily

spin spin spin spin

Basic Spinlocks are Unfair

A B

0 20 40 60 80 100 120 140 160

A B A B A B

lock

lock unlock lock unlock lock unlock lock unlock

Scheduler is unaware of locks/unlocks!

Fairness: Ticket Locks

Idea: reserve each thread’s turn to use a lock.
Each thread spins until their turn.
Use new atomic primitive, fetch-and-add!
!
!
!
!

Acquire: Grab ticket; Spin while not thread’s ticket != turn
Release: Advance to next turn

int	FetchAndAdd(int	*ptr)	{	
	int	old	=	*ptr;	
	*ptr	=	old	+	1;	
	return	old;	

}	

0
1
2
3
4
5
6
7

A lock():
B lock():
C lock():

A unlock():

A lock():

B unlock():

C unlock():
A unlock():

Ticket Lock ExampLE

Ticket Turn

Ticket Lock Implementation

typedef	struct	__lock_t	{	
	int	ticket;	
	int	turn;	

}	
	
void	lock_init(lock_t	*lock)	{	

	lock->ticket	=	0;	
	lock->turn	=	0;	

}	

void	acquire(lock_t	*lock)	{	
	int	myturn	=	FAA(&lock->ticket);	
	//	spin	
	while	(lock->turn	!=	myturn);	

}	
	
void	release(lock_t	*lock)	{	

	FAA(&lock->turn);	
}	

Spinlock Performance

Fast when…
 - many CPUs
 - locks held a short time
 - advantage: avoid context switch

Slow when…
 - one CPU
 - locks held a long time
 - disadvantage: spinning is wasteful

spin spin spin spin spin

CPU Scheduler is Ignorant

A B

0 20 40 60 80 100 120 140 160

C D A B C D

lock unlock lock

CPU scheduler may run B, C, D instead of A
even though B, C, D are waiting for A

Ticket Lock with yield

typedef	struct	__lock_t	{	
	int	ticket;	
	int	turn;	

}	
	
void	lock_init(lock_t	*lock)	{	

	lock->ticket	=	0;	
	lock->turn	=	0;	

}	

void	acquire(lock_t	*lock)	{	
	int	myturn	=	FAA(&lock->ticket);	
	while	(lock->turn	!=	myturn)	
	 	yield();	

}	
	
void	release(lock_t	*lock)	{	

	FAA(&lock->turn);	
}	

spin spin spin spin spin

A B

0 20 40 60 80 100 120 140 160

C D A B C D

lock unlock lock

A

0 20 40 60 80 100 120 140 160

A B

lock unlock lock

no yield:

yield:

Yield Instead of Spin

https://tinyurl.com/cs537-sp19-bunny5

Assuming round robin scheduling, 10ms time slice
Processes A, B, C, D, E, F, G, H, I, J in the system

Timeline
A: lock() … compute … unlock()
B: lock() … compute … unlock()
C: lock()

YIELD VS SPIN
Assuming round robin scheduling, 10ms time slice
Processes A, B, C, D, E, F, G, H, I, J in the system

Timeline
A: lock() … compute … unlock()
B: lock() … compute … unlock()
C: lock()

If A’s compute is 20ms long, starting at t = 0, when does B get lock with spin ?

If B’s compute is 30ms long, when does C get lock with spin ?

If context switch time = 1ms, when does B get lock with yield ?

Spinlock Performance

Waste of CPU cycles?
Without yield: O(threads * time_slice)
With yield: O(threads * context_switch)

Even with yield, spinning is slow with high thread contention

Next improvement: Block and put thread on waiting queue instead of spinning

Lock Implementation: Block when Waiting

Remove waiting threads from scheduler ready queue
(e.g., park() and unpark(threadID))

Scheduler runs any thread that is ready

RUNNABLE:
RUNNING:
WAITING:

A, B, C, D

0 20 40 60 80 100 120 140 160

Lock Implementation: Block when Waiting

typedef struct {
bool lock = false;
bool guard = false;
queue_t q;

} LockT;

void	acquire(LockT	*l)	{	
	while	(XCHG(&l->guard,	true));	
	if	(l->lock)	{	
	 	 	qadd(l->q,	tid);	
	 	 	l->guard	=	false;	
	 	 	park();					//	blocked		
	}	else	{	
	 	 	l->lock	=	true;	
	 	 	l->guard	=	false;	
	}	

}	
	
void	release(LockT	*l)	{	

	while	(XCHG(&l->guard,	true));	
	if	(qempty(l->q))	l->lock=false;	
	else	unpark(qremove(l->q));		
	l->guard	=	false;	

}	

Lock Implementation: Block when Waiting
void	acquire(LockT	*l)	{	

	while	(XCHG(&l->guard,	true));	
	if	(l->lock)	{	
	 	 	qadd(l->q,	tid);	
	 	 	l->guard	=	false;	
	 	 	park();					//	blocked		
	}	else	{	
	 	 	l->lock	=	true;	
	 	 	l->guard	=	false;	
	}	

}	
	
void	release(LockT	*l)	{	

	while	(XCHG(&l->guard,	true));	
	if	(qempty(l->q))	l->lock=false;	
	else	unpark(qremove(l->q));		
	l->guard	=	false;	

}	

(a)  Why is guard used?

(b) Why okay to spin on guard?

(c) In release(), why not set lock=false when
unpark?

(d) Is there a race condition?

Race Condition

Thread 1
if	(l->lock)	{	
		qadd(l->q,	tid);	
		l->guard	=	false;	

	
	
	
	
	
		park();				//	block	

(in unlock) (in lock) Thread 2

while	(TAS(&l->guard,	true));	
if	(qempty(l->q))	//	false!!	
else	unpark(qremove(l->q));		
l->guard	=	false;	

Block when Waiting: FINAL correct LOCK
typedef struct {

bool lock = false;
bool guard = false;
queue_t q;

} LockT;

void	acquire(LockT	*l)	{	
	while	(TAS(&l->guard,	true));	
	if	(l->lock)	{	
	 	 	qadd(l->q,	tid);	
	 	 	setpark();	//	notify	of	plan	
	 	 	l->guard	=	false;	
	 	 	park();	//	unless	unpark()		
	}	else	{	
	 	 	l->lock	=	true;	
	 	 	l->guard	=	false;	
	}	

}	
void	release(LockT	*l)	{	

	while	(TAS(&l->guard,	true));	
	if	(qempty(l->q))	l->lock=false;	
	else	unpark(qremove(l->q));		
	l->guard	=	false;	

}	

setpark() fixes race condition

Spin-Waiting vs Blocking

Each approach is better under different circumstances
Uniprocessor

Waiting process is scheduled à Process holding lock isn’t
Waiting process should always relinquish processor
Associate queue of waiters with each lock (as in previous implementation)

Multiprocessor
Waiting process is scheduled à Process holding lock might be
Spin or block depends on how long, t, before lock is released

Lock released quickly à Spin-wait
Lock released slowly à Block
Quick and slow are relative to context-switch cost, C

When to Spin-Wait? When to Block?

If know how long, t, before lock released, can determine optimal behavior
How much CPU time is wasted when spin-waiting?

How much wasted when block?

What is the best action when t<C?

When t>C?

Problem: �
Requires knowledge of future; too much overhead to do any special prediction

t

Two-Phase Waiting

Theory: Bound worst-case performance; ratio of actual/optimal
When does worst-possible performance occur?

Algorithm: Spin-wait for C then block à Factor of 2 of optimal
Two cases:

t < C: optimal spin-waits for t; we spin-wait t too
t > C: optimal blocks immediately (cost of C);
 we pay spin C then block (cost of 2 C);
 2C / C à 2-competitive algorithm

Spin for very long time t >> C
Ratio: t/C (unbounded)

NEXT STEPS

Project 2b: Due tomorrow!

Next class: Condition Variables

