
CPU SCHEDULING

Shivaram Venkataraman
CS 537, Spring 2019

ADMINISTRIVIA

-  Project 1a is due today! Thursday at 11.59pm
-  No office hours from 5pm Tue to noon Thu
-  Fill out office hours form? https://goo.gl/forms/

5VxrwRawtEFkrjO23

-  No more waitlist!
-  Project 1b out tomorrow. Schedule updates

AGENDA / LEARNING OUTCOMES

Scheduling
 How does the OS decide what process to run?
 What are some of the metrics to optimize for?

Policies

 How to handle interactive and batch processes?
 What to do when OS doesn’t have complete information?

RECAP

RECAP: SCHEDULING MECHANISM

Process: Abstraction to virtualize CPU

Use time-sharing in OS to switch between processes

PROCESS STATE TRANSITIONS

Running Ready

Blocked

Descheduled

Scheduled

I/O: initiate I/O: done

RECAP: SCHEDULING MECHANISM

Limited Direct Execution

 Use system calls to run access devices etc. from user mode

 Context-switch using interrupts for multi-tasking

timer interrupt
save regs(A) to k-stack(A)
move to kernel mode
jump to trap handler

restore regs(B) from k-stack(B)
move to user mode
jump to B’s IP

Operating System Hardware Program

Handle the trap
Call switch() routine
 save kernel regs(A) to proc-struct(A)
 restore kernel regs(B) from proc-struct(B)
 switch to k-stack(B)
return-from-trap (into B)

Process A

Process B

POLICY ?

Running Ready

Blocked

Descheduled

Scheduled

I/O: initiate I/O: done

VOCABULARY

Workload: set of jobs (arrival time, run_time)

Job ~ Current execution of a process

 Alternates between CPU and I/O
 Moves between ready and blocked queues

Scheduler: Decides which ready job to run
Metric: measurement of scheduling quality

APPROACH

Assumptions

Scheduling
policy

Metric

ASSUMPTIONS

1. Each job runs for the same amount of time
2. All jobs arrive at the same time
3. All jobs only use the CPU (no I/O)
4. Run-time of each job is known

METRIC 1: TURNAROUND TIME

Turnaround time = completion_time - arrival_time
Example:

 Process A arrives at time t = 10, finishes t = 30
 Process B arrives at time t = 10, finishes t = 50

Turnaround time

 A = 20, B = 40
 Average = 30

FIFO / FCFS

FIFO / FCFS

FIFO: First In, First Out FCFS: First Come, First Served

Job Arrival(s) run time (s)

A ~0 10

B ~0 10

C ~0 10

FIFO / FCFS
Job Arrival(s) run time (s)

A ~0 10

B ~0 10

C ~0 10

0 20 40 60 80 100 120
Time

A B C

Average
Turnaround

Time ?

ASSUMPTIONS

1. Each job runs for the same amount of time
2. All jobs arrive at the same time
3. All jobs only use the CPU (no I/O)
4. Run-time of each job is known

2-Minute QUIZ

How will FIFO perform without this assumption ?

What scenarios can lead to bad performance?

Big first job
Job Arrival(s) run time (s)

A ~0 100

B ~0 10

C ~0 10

0 20 40 60 80 100 120
Time

A B C
[B,C arrive]

Average
Turnaround

Time

(100 + 110 + 120)/ 3
= 110s

Convoy Effect

CHALLENGE

Turnaround time suffers when short jobs must wait for long jobs

New scheduler:

 SJF (Shortest Job First)
 Choose job with smallest run_time!

SHORTEST JOB FIRST (SJF)
Job Arrival(s) run time (s)

A ~0 100

B ~0 10

C ~0 10

0 20 40 60 80 100 120
Time

B C A

Average
Turnaround

Time

(10 + 20 + 120)/ 3
= 50s!

FIFO: 110s ?!

ASSUMPTIONS

1. Each job runs for the same amount of time
2. All jobs arrive at the same time
3. All jobs only use the CPU (no I/O)
4. Run-time of each job is known

Job Arrival(s) run time (s)

A ~0 100

B 10 10

C 10 10

Average Turnaround Time with SJF?

0 20 40 60 80 100 120
Time

A B C
[B,C arrive]

Job Arrival(s) run time (s)

A ~0 100

B 10 10

C 10 10
Average

Turnaround
Time ?

(100 + 110 + 120)/ 3
= 110s

PREEMPTIVE SCHEDULING

Prev schedulers:
 FIFO and SJF are non-preemptive
 Only schedule new job when previous job voluntarily relinquishes CPU

New scheduler:

 Preemptive: Schedule different job by taking CPU away from running job
 STCF (Shortest Time-to-Completion First)
 Always run job that will complete the quickest

PREMPTIVE SCTF
Job Arrival(s) run time (s)

A ~0 100

B 10 10

C 10 10

0 20 40 60 80 100 120
Time

A B C A
[B,C arrive]

Average
Turnaround

Time

(10 + 20 + 120)/ 3
= 50s

METRIC 2: RESPONSE TIME

Response time = first_run_time - arrival_time

A

0 20 40 60 80

B’s turnaround: 20s

B

[B arrives]

B’s response: 10s

ROUND ROBIN SCHEDULER

0 5 10 15 20 25 30
Time

A B C

0 5 10 15 20 25 30
Time

ABCABCABCABCABC

Average Response Time

(0 + 5 + 10)/3 = 5s (0 + 1 + 2)/3 = 1s

2-MINUTE QUIZ

What is the turnaround time for two cases ?
Is round robin better or worse?

0 5 10 15 20 25 30
Time

A B C

0 5 10 15 20 25 30
Time

ABCABCABCABCABC

TRADE-OFFS

Round robin increases turnaround time decreases response time

Tuning challenges:

 What is a good time slice for round robin?
 What is the overhead of context switching?

ASSUMPTIONS

1. Each job runs for the same amount of time
2. All jobs arrive at the same time
3. All jobs only use the CPU (no I/O)
4. Run-time of each job is known

NOT IO AWARE

0 20 40 60 80 100 120 140
Time

A A A A A B B B B B

CPU

Disk

Job holds on to CPU while blocked on disk!

I/O AWARE SCHEDULING

0 20 40 60 80 100 120 140
Time

A A A A AB B B B B

CPU

Disk

Treat Job A as 3 separate CPU bursts.
When Job A completes I/O, another Job A is ready

I/O AWARE SCHEDULING

0 20 40 60 80 100 120 140
Time

A A A A AB B B B B

CPU

Disk

Treat Job A as 3 separate CPU bursts.
When Job A completes I/O, another Job A is ready

Each CPU burst is
shorter than Job B

With SCTF,
Job A preempts Job B

ASSUMPTIONS

1. Each job runs for the same amount of time
2. All jobs arrive at the same time
3. All jobs only use the CPU (no I/O)
4. Run-time of each job is known

MULTI-LEVEL FEEDBACK QUEUE

MLFQ: GENERAL PURPOSE SCHEDULER

Must support two job types with distinct goals
 - “interactive” programs care about response time
 - “batch” programs care about turnaround time

Approach:

 Multiple levels of round-robin
 Each level has higher priority than lower level

 Can preempt them

MLFQ EXAMPLE

Q1

Q2

Q3

Q4

Q5

Q6

Q7

Q8

[Low Priority]

[High Priority]

D

C

A B “Multi-level” – Each level is a queue!

Rules for MLFQ

Rule 1: If priority(A) > Priority(B)

 A runs

Rule 2: If priority(A) == Priority(B),

 A & B run in RR

CHALLENGES

How to set priority?
What do we do when a new process arrives?
Does a process stay in one queue or move between queues?

Approach: Use past behavior of process to predict future!
Guess how CPU burst (job) will behave based on past CPU bursts

MORE MLFQ RULES

Rule 1: If priority(A) > Priority(B), A runs
Rule 2: If priority(A) == Priority(B), A & B run in RR

Rule 3: Processes start at top priority
Rule 4: If job uses whole slice, demote process
(longer time slices at lower priorities)

ONE LONG JOB

Q2

Q1

Q0

0 50 100 150 20

Q2

Q1

Q0

INTERACTIVE PROCESS JOINS

Q2

Q1

Q0

0 50 100 150 20

Q2

Q1

Q0

MLFQ PROBLEMS?

Q2

Q1

Q0

0 50 100 150 20

Q2

Q1

Q0

What is the problem
with this schedule ?

AVOIDING STARVATION

Q2

Q1

Q0

0 50 100 150 20

Q2

Q1

Q0

Problem: Low priority job
may never get scheduled

Periodically boost priority
of all jobs (or all jobs that
haven’t been scheduled)

GAMING THE SCHEDULER ?

Q2

Q1

Q0

0 50 100 150 20

Q2

Q1

Q0

Job could trick scheduler by doing I/O
just before time-slice end

Account for total run time at priority
Downgrade when exceed threshold

SUMMARY

Scheduling Policies
 Understand workload characteristics like arrival, CPU, I/O
 Scope out goals, metrics (turnaround time, response time)

Approach

 Trade-offs based on goals, metrics (RR vs. SCTF)
 Past behavior is good predictor of future behavior?

NEXT STEPS

Project 1a: Due Jan 31 (Thursday) at 11.59pm
Project 1b: Out on Jan 30th

Thursday class, discussion

 More advanced scheduling policies
 Summary / review of process, CPU scheduling
 xv6 introduction, walk through
 Go through xv6 context switch / syscall?

