
VIRTUALIZATION: CPU TO MEMORY

Shivaram Venkataraman
CS 537, Spring 2019

ADMINISTRIVIA

-  Project 1a is due today
-  Extra office hours from 7pm to 9pm?

-  Project 1b is out, due Feb 8th (1day shorter)
-  Discussion section: xv6 code walk through!
-  Schedule updates

AGENDA / LEARNING OUTCOMES

CPU virtualization
 Recap of scheduling policies
 Work through problems

Memory virtualization
 What is the need for memory virtualization?
 How to virtualize memory?

RECAP: CPU VIRTUALIZATION

RECAP: SCHEDULING MECHANISM

Process: Abstraction to virtualize CPU
Use time-sharing in OS to switch between processes

Limited Direct Execution

 Use system calls to run access devices etc. from user mode
 Context-switch using interrupts for multi-tasking

POLICY

Running Ready

Blocked

Descheduled

Scheduled

I/O: initiate I/O: done

METRICS à POLICIES

Turnaround time = completion_time - arrival_time

FIFO: First come, first served
SJF: Shortest job first
SCTF: Shortest completion time first

METRICS à POLICIES

Response time = first_run_time - arrival_time

RR: Round robin with time slice
Minimizes response time but could increase turnaround?

QUIZ!

≥ ./scheduler.py -p RR -j 3 -s 121
Here is the job list, with the run time of each job:
 Job 0 (length = 1)
 Job 1 (length = 6)
 Job 2 (length = 4)

Compute response time, turn around time for RR, SJF and FIFO

ASSUMPTIONS

1. Each job runs for the same amount of time
2. All jobs arrive at the same time
3. All jobs only use the CPU (no I/O)
4. Run-time of each job is known

NOT IO AWARE

0 20 40 60 80 100 120 140
Time

A A A A A B B B B B

CPU

Disk

Job holds on to CPU while blocked on disk!

I/O AWARE SCHEDULING

0 20 40 60 80 100 120 140
Time

A A A A AB B B B B

CPU

Disk

Treat Job A as 3 separate CPU bursts.
When Job A completes I/O, another Job A is ready

I/O AWARE SCHEDULING

0 20 40 60 80 100 120 140
Time

A A A A AB B B B B

CPU

Disk

Treat Job A as 3 separate CPU bursts.
When Job A completes I/O, another Job A is ready

MULTI-LEVEL FEEDBACK QUEUE

MLFQ EXAMPLE

Q1

Q2

Q3

Q4

Q5

Q6

Q7

Q8

[Low Priority]

[High Priority]

D

C

A B Rules for MLFQ

Rule 1: If priority(A) > Priority(B)

 A runs

Rule 2: If priority(A) == Priority(B),

 A & B run in RR

Rule 3: Processes start at top priority
Rule 4: If job uses whole slice, demote process.

 If not stay at level

MLFQ WALKTHROUGH

Q2

Q1

Q0

0 50 100 150 20

Q2

Q1

Q0

HOMEWORK

http://pages.cs.wisc.edu/~remzi/OSTEP/Homework/homework.html

CPU SUMMARY

Mechanism
 Process abstraction
 System call for protection
 Context switch to time-share

Policy

 Metrics: turnaround time, response time
 Balance using MLFQ

VIRTUALIZING MEMORY

BACK IN THE DAY…

max

64KB

0KB

Current Program
(code, data, etc.)

Operating System
(code, data, etc.)

Uniprogramming: One process runs at a time

Disadvantages?

MULTIPROGRAMMING GOALS

Transparency: Process is unaware of sharing

Protection: Cannot corrupt OS or other process memory

Efficiency: Do not waste memory or slow down processes

Sharing: Enable sharing between cooperating processes

ABSTRACTION: ADDRESS SPACE

16KB

15KB

2KB

1KB

0KB

Stack

(free)

Heap

Program Code the code segment:
where instructions live

the heap segment:
contains malloc’d data

dynamic data structures
(it grows downward)

(it grows upward)
the stack segment:

contains local variables
arguments to routines,

return values, etc. 512KB

448KB

384KB

320KB

256KB

192KB

128KB

64KB

0KB

(free)

(free)

(free)

(free)

Operating System
(code, data, etc.)

Process A
(code, data, etc.)

Process B
(code, data, etc.)

Process C
(code, data, etc.)

WHAT IS IN ADDRESS SPACE?

16KB

15KB

2KB

1KB

0KB

Stack

(free)

Heap

Program Code the code segment:
where instructions live

the heap segment:
contains malloc’d data

dynamic data structures
(it grows downward)

(it grows upward)
the stack segment:

contains local variables
arguments to routines,

return values, etc.

Static: Code and some global variables

Dynamic: Stack and Heap

STACK ORGANIZATION

alloc(A);	
alloc(B);	
alloc(C);	
free(C);	
alloc(D);	
free(D);	
free(B);	
free(A);	

Pointer between allocated and free space
Allocate: Increment pointer
Free: Decrement pointer

No fragmentation!

16KB

15KB

2KB

1KB

0KB

Stack

(free)

Heap

Program Code the code segment:
where instructions live

the heap segment:
contains malloc’d data

dynamic data structures
(it grows downward)

(it grows upward)
the stack segment:

contains local variables
arguments to routines,

return values, etc.

WHAT GOES ON STACK?

main	()	{	
	int	A	=	0;	
	foo(A);	
	printf(“A:	%d\n”,	A);	

}	
void	foo	(int	Z)	{	

	int	A	=	2;	
	Z	=	5;	
	printf(“A:	%d	Z:	%d\n”,	A,	Z);	

}	
	
	

HEAP ORGANIZATION

Allocate from any random location: malloc(), new() etc.
•  Heap memory consists of allocated and free areas (holes)
•  Order of allocation and free is unpredictable

Free

Free

Alloc

Alloc

16 bytes

24 bytes

12bytes

16 bytes

A

B

QUIZ
int	x;	
int	main(int	argc,	char	*argv[])	{	
		int	y;	
		int	*z	=	malloc(sizeof(int)););	
}	

Address Location

x

main

y

z

*z

Possible segments: static
data, code, stack, heap

MEMORY ACCESS

#include <stdio.h> !
#include <stdlib.h> !
!
int main(int argc, char *argv[]) { !
 int x; !
 x = x + 3; !
} !

otool -tv demo1.o !
(or objdump on Linux) !

0x10:	movl 	0x8(%rbp),	%edi	
0x13:	addl 	$0x3,	%edi	
0x19:	movl 	%edi,	0x8(%rbp)	

%rbp is the base pointer:
points to base of current stack frame

MEMORY ACCESS

0x10:	movl 	0x8(%rbp),	%edi	
0x13:	addl 	$0x3,	%edi	
0x19:	movl 	%edi,	0x8(%rbp)	

Initial %rip = 0x10
%rbp = 0x200

%rbp is the base pointer: �
points to base of current stack frame

%rip is instruction pointer (or program counter)

MEMORY ACCESS

0x10:	movl 	0x8(%rbp),	%edi	
0x13:	addl 	$0x3,	%edi	
0x19:	movl 	%edi,	0x8(%rbp)	

Initial %rip = 0x10
%rbp = 0x200

%rbp is the base pointer: �
points to base of current stack frame

%rip is instruction pointer (or program counter)

Fetch instruction at addr 0x10
Exec:

 load from addr 0x208

Fetch instruction at addr 0x13
Exec:

 no memory access

Fetch instruction at addr 0x19
Exec:

 store to addr 0x208

HOW TO VIRTUALIZE MEMORY

Problem: How to run multiple processes simultaneously?
Addresses are “hardcoded” into process binaries
How to avoid collisions?

Possible Solutions for Mechanisms (covered today):

1.  Time Sharing
2.  Static Relocation
3.  Base
4.  Base+Bounds

code
data
Program

Memory

TIME SHARE MEMORY: EXAMPLE

PROBLEMS WITH TIME SHARING?

Ridiculously poor performance

Better Alternative: space sharing!

 At same time, space of memory is divided across processes
 Remainder of solutions all use space sharing

2) Static Relocation

Idea: OS rewrites each program before loading it as a process in memory
Each rewrite for different process uses different addresses and pointers
Change jumps, loads of static data

•  0x10:movl0x8(%rbp), %edi !
•  0x13:addl$0x3, %edi !
•  0x19:movl%edi, 0x8(%rbp) !

0x1010: movl 0x8(%rbp), %edi !
0x1013: addl $0x3, %edi !
0x1019: movl %edi, 0x8(%rbp) !

0x3010:movl 0x8(%rbp), %edi !
0x3013:addl $0x3, %edi !
0x3019:movl %edi, 0x8(%rbp) !

rewrite

rewrite

(free)

Program Code

stack

Heap

(free)

Program Code

stack

Heap

(free)

(free)

(free)
4 KB

8 KB

12 KB

16 KB

process 1

process 2

0x1010: movl 0x8(%rbp), %edi !
0x1013: addl $0x3, %edi !
0x1019: movl %edi, 0x8(%rbp) !

0x3010:movl 0x8(%rbp), %edi !
0x3013:addl $0x3, %edi !
0x3019:movl %edi, 0x8(%rbp) !

Static: Layout in Memory

why didn’t OS rewrite stack addr?

Static Relocation: Disadvantages

No protection
–  Process can destroy OS or other processes
–  No privacy

Cannot move address space after it has been placed

–  May not be able to allocate new process

3) Dynamic Relocation
Goal: Protect processes from one another
Requires hardware support

–  Memory Management Unit (MMU)
MMU dynamically changes process address at every memory reference

–  Process generates logical or virtual addresses (in their address space)
–  Memory hardware uses physical or real addresses

CPU MMU
Memory

Process runs here OS can control MMU

Logical address Physical address

Hardware Support for Dynamic Relocation
Two operating modes

Privileged (protected, kernel) mode: OS runs
•  When enter OS (trap, system calls, interrupts, exceptions)
•  Allows certain instructions to be executed

–  Can manipulate contents of MMU
•  Allows OS to access all of physical memory

User mode: User processes run
•  Perform translation of logical address to physical address

Implementation of Dynamic Relocation: BASE REG
Translation on every memory access of user process
MMU adds base register to logical address to form physical address

base mode registers
32 bits 1 bit

mode
=

user?
no

yes

+
base

logical
address

physical
address

MMU

Dynamic Relocation with Base Register

Translate virtual addresses to physical by adding a fixed offset each time.
Store offset in base register

Each process has different value in base register
Dynamic relocation by changing value of base register!

P1

P2
4 KB

5 KB

6 KB

2 KB

3 KB

1 KB

0 KB

same code

VISUAL Example of DYNAMIC RELOCATION:
BASE REGISTER

P1: load 100, R1

Virtual

P2: load 100, R1

P2: load 1000, R1

P1: load 100, R1

P1

P2
4 KB

5 KB

6 KB

2 KB

3 KB

1 KB

0 KB

VISUAL Example of DYNAMIC RELOCATION:
BASE REGISTER

P1: load 100, R1

Virtual

P2: load 100, R1

P2: load 1000, R1

P1: load 100, R1

Quiz: Who Controls the Base Register?

What entity should do translation of addresses with base register?
 (1) process, (2) OS, or (3) HW

What entity should modify the base register?

 (1) process, (2) OS, or (3) HW

P1

P2
4 KB

5 KB

6 KB

2 KB

3 KB

1 KB

0 KB

P1: load 100, R1 load 1124, R1
Virtual Physical

P2: load 100, R1 load 4196, R1
P2: load 1000, R1 load 5196, R1
P1: load 100, R1 load 2024, R1

Can P2 hurt P1?
Can P1 hurt P2?

How well does dynamic relocation do with base register for protection?

P1

P2
4 KB

5 KB

6 KB

2 KB

3 KB

1 KB

0 KB

P1: load 100, R1 load 1124, R1
Virtual Physical

P2: load 100, R1 load 4196, R1
P2: load 1000, R1 load 5196, R1
P1: load 100, R1 load 2024, R1

Can P2 hurt P1?
Can P1 hurt P2?

P1: store 3072, R1 store 4096, R1 (3072 + 1024)

How well does dynamic relocation do with base register for protection?

4) Dynamic with Base+Bounds

Idea: limit the address space with a bounds register

Base register: smallest physical addr (or starting location)
Bounds register: size of this process’s virtual address space

–  Sometimes defined as largest physical address (base + size)

OS kills process if process loads/stores beyond bounds

Implementation of BASE+BOUNDS
Translation on every memory access of user process
•  MMU compares logical address to bounds register
 if logical address is greater, then generate error
•  MMU adds base register to logical address to form physical address

base mode bounds registers
32 bits 32 bits 1 bit

mode
=

user?

<
bounds?

no

no

yes

yes +
base

error

logical
address

physical
address

P1

P2
4 KB

5 KB

6 KB

2 KB

3 KB

1 KB

0 KB

base register

P1 is running
bounds register

P1

P2
4 KB

5 KB

6 KB

2 KB

3 KB

1 KB

0 KB

P2 is running

base register

bounds register

P1

P2
4 KB

5 KB

6 KB

2 KB

3 KB

1 KB

0 KB

P1: load 100, R1 load 1124, R1
Virtual Physical

P2: load 100, R1 load 4196, R1
P2: load 1000, R1 load 5196, R1
P1: load 100, R1 load 2024, R1

Can P1 hurt P2?

P1: store 3072, R1

Managing Processes with Base and Bounds
Context-switch: Add base and bounds registers to PCB
Steps

–  Change to privileged mode
–  Save base and bounds registers of old process
–  Load base and bounds registers of new process
–  Change to user mode and jump to new process

What if don’t change base and bounds registers when switch?

Protection requirement
•  User process cannot change base and bounds registers
•  User process cannot change to privileged mode

Base and Bounds Advantages
Provides protection (both read and write) across address spaces
Supports dynamic relocation
 Can place process at different locations initially and also move address spaces

Simple, inexpensive implementation: Few registers, little logic in MMU
Fast: Add and compare in parallel

Base and Bounds DISADVANTAGES

Disadvantages
–  Each process must be allocated contiguously in physical memory
 Must allocate memory that may not be used by process

–  No partial sharing: Cannot share limited parts of address space

Stack

Code

Heap

0

2n-1

NEXT STEPS

Project 1a: Due today! at 11.59pm
Project 1b: Out now, due Feb 8th

Thursday discussion

 xv6 introduction, walk through
 Project 1b tips

Next week: Virtual memory segmentation, paging and more!

