MEMORY: PAGING AND TLBS

Shivaram Venkataraman
CS 537, Spring 2019

ADMINISTRIVIA

- Project Ib is due Friday

- Project la grades are out

- Project 2a going out tomorrow

- Discussion section: Process API, Project 2a

AGENDA / LEARNING OUTCOMES

Memory virtualization
What is paging and how does it work!?

What are some of the challenges in implementing paging?

RECAP

MEMORY VIRTUALIZATION

Transparency: Process is unaware of sharing \\w); M,‘mb

/gzr’”
o

Sharing: Enable sharing between cooperating processes ‘/> SUBP

Protection: Cannot corrupt OS or other process memory

Efficiency: Do not waste memory or slow down processes

OKB

1KB

2KB

15KB

16KB

ABSTRACTION: ADDRESS SPACE

——

Heap/

(free)

Stack/

oK

NFU N)

a

OKB

64KB

128KB

192KB

256KB

320KB

384KB

448KB

512KB

Operating System
(code, data, etc.)

(free)

Process C
(code, data, etc.)

Process B
(code, data, etc.)

(free)

Process A
(code, data, etc.)

(free)

(free)

MMU contains Segment Table (per process)

L¢
AV
How many bits
for segment!?

How many bits 1
\ior offset? 2
¥ 3\

SEGMENTATION IMPLEMENTATION

(-~
A,
e Each segment has own{t&se and bounds protectlon bItS (P o < /‘U&M
e Example: |14 bit logical address, 4 segments é&, ({'U“‘
M o Y
W At
(Segment Base Bounds |[R|W &
0 0x2000 |O0x6ff @O remember:
0x0000 |Ox4ff 1 1 | hex digit = 4 bits
0x3000 |Oxfff 11 m
0€0600 |0£000) |0 0 A7
~— \——

™
\(\/

\Z;;(o&X«

QUIZ: ADDRESS TRANSLATIONS WITH SEGMENTATION

P ey A ‘ Translate logical (in hex) to physical
Segment |[Base Bounds R_W
0 ox2000) |ox6ff] |1 o 0x0240;
1 0x0000 |ox4ff 11 0x 1 108:
2 0x3000 |Oxfff 11
3 OXx0000 | @%000 0 0 0x265c:
Remember: O)9002: ,
| hex digit—=>4 bits dx OO (F/sl(}— ey)
—
ok o3 Fdf |

oo

REVIEW: MEMORY ACCESSES .

|. Fetch instruction at logical addr 0x0010 /-~

0x0e1a: movl ©x1100, %edi Physical addr: 0x4010
Ox0013: addl $ox3, %edi _
0x0019: movl %edi, Ox1100 2. Exec, load from logical addr 0x| 100
Physical addr: 0x5900
Zrip: 0x0010 3. Fetch instruction at logical addr 0x0013
Physical addr: 0x401 3
Seg Base Bounds 4 o
0 | 0x4000 Oxfff L oTee s
| 0x5800 Oxcfff 5. Fetch instruction at logical addr 0x0019
2 0x6800 Ox7ff Physical addr: 0x4019

6. Exec, store to logical addr Ox| 100

Physical addr: 0x5900

ADVANTAGES OF SEGMENTATION

Enables sparse allocation of address space

Stack and heap can grow independently

* Heap: If no data on free list, dynamic memory allocator requests more from OS
(e.g., UNIX: malloc calls sbrk())

» Stack: OS recognizes reference outside legal segment, extends stack implicitly
Different protection for different segments
* Enables sharing of selected segments

* Read-only status for code

Supports dynamic relocation of each segment

DISADVANTAGES OF SEGMENTATION

oKB Not Compacted
Each segment must be allocated contiguously
T - 8KB Operating System
May not have sufficient physical memory for large segments? 1eks
(not in use)
24KB
External Fragmentation Allocated
3 (not in use)
40KB Allocated
48KB .
(not in use)
56KB
Allocated

64KB

REVIEW: MATCH DESCRIPTION

Description Name of approach

|. one process uses RAM at a time
rewrite code and addresses before running

3. add per-process starting location to virt addr
to obtain phys addr

4. dynamic approach that verifies address is in
valid range

5. several baset+bound pairs per process

Candidates: Segmentation, Static Relocation, Base, Base+Bounds, Time Sharing

PAGING

OKB

8KB

16KB

24KB

32KB

40KB

48KB

56KB

64KB

FRAGMENTATION

Not Compacted

Definition: Free memory that can’t be usefully allocated

Operating System

Types of fragmentation

(not in use)34." External:Visible to allocator (e.g., OS)
Internal;Visible to requester
Allocated _
(not in use)q A% . ' \)AL)
Allocated I)
(/G Internal
(notin use) / & | - L& el
e
Allocated (\: free

v

).

Eliminate external fragmentation
Grow segments as needed

|dea:
Divide address spaces and physical
memory into fixed-sized pages

Size: 2", Example: 4KB

PAGING

Goal: Eliminate requirement that address space is contiguous

] ///v
—
>
Process | Process 2 Process 3

Logical View

Physical View

TRANSLATION OF PAGE ADDRESSES

How to translate logical address to physical address!?
— High-order bits of address designate page number
— Lowe-order bits of address designate offset within page

20 bits 12 bits X 32 bits
page number page offset Logical address
v
translate Ay l
| o
frame number page offset Physical address

No addition needed; just append bits correctly...

ADDRESS FORMAT

Given known page size, how many bits are needed in address to specify offset in page?

Page Size

Low Bits (offset)

|6 bytes

S

| KB
| MB

2)oytes

4 KB

4 \\L&)

% [LA\"F’
20

a(
(2

ADDRESS FORMAT

Given number of bits in virtual address and bits for offset,
how many bits for virtual page number?

Page Size Low Bits(offset) Virt Addr Bits High Bits(vpn)
|6 bytes 4 10
| KB 10 20
| MB 20 32
512 bytes 9 |6

4 KB 12 32

ADDRESS FORMAT

Given number of bits for vpn, how many virtual pages can there be in an address space!?

Page Size Low Bits (offset) Virt Addr Bits High Bits (vpn) | Virt Pages
16 bytes 4 10 6 9 628y
| KB 10 20 10 2" o~ 102f
| MB 20 32 12 oMt 24k
512 bytes 9 16 7 0" 1 2 8
4 KB 12 32 20 nS e .

gl

VIRTUAL —> PHYSICAL PAGE MAPPING

VPN offset
Number of bits in 0 I 0 I 0 I
virtual address v v
Addr Mapper

need not equal ¥ ¥ v ¥

I 0 I I 0 I 0 I
number of bits in
physical address PPN offset

How should OS translate VPN to PPN?

PAGETABLES

What is a good data structure ?

Simple solution: Linear page table aka array

0

2Mn

PN

3130292827 262524232221 20191817 16151413 121110 9 8 7 6 5 4 3 2 1
- Q =

a L
PFN ol <8§DE

PER-PROCESS PAGETABLE

FILL IN PAGETABLE

Virt Mem

S
Q]
1/

Page Tables:

Phys Mem

QUtZ: HOW BIG IS A PAGETABLE?

How big is a typical page table?
- assume 32-bit address space
- assume 4 KB pages
- assume 4 byte entries

%

WHERE ARE PAGETABLES STORED?

> kernd oF OS5

Implication: Store each page table inlmemory

Hardware finds page table base with register (e.g., CR3 on x86
pag gister (e.g,) « rath

L ~ g
What happens on a context-switch? Where o T
Change contents of page table base register to newly scheduled process
Save old page table base register in PCB of descheduled process

s Tabile £
%L Tobh }EJ f2-

OTHER PAGETABLE INFO

What other info is in pagetable entries besides translation?
— valid bit
— protection bits
— present bit (needed later)
— reference bit (needed later)
— dirty bit (needed later)

Pagetable entries are just bits stored in memory

— Agreement between hw and OS about interpretation

MEMORY AGGESSES WITHPAGING

| 0x0010: movl 0x1100, %edi

Assume PT is at phys addr 0x5000
Assume PTFE’s are 4 bytes——

Assume 4KB pages
How many bits for offset? 12

.{_2

Simplified views 0y

of page table | 80 > Anm-a,a
99

-

Fetch instruction at logical addr 0>'§6_0IO

Access page table to get ppn for vpn 0
r

Mem ref |: % {

Learn vpn O is at ppn 2

y\ VY &
Fetch instruction at / (Mem ref 2)

C eeNI(opel)

Exec, load from logical add O@I 00

Access page table to get ppn for vpn‘

/

- K 20D
Mem ref 3: 5 Z?' by 5000
Learn vpn | is at ppn 0 4 4 (i’>:

Movl from©x01%Dinto reg (Mem ref 4)

)

16

32

48

64

80

96

112

128

(unused)

page 3 of AS

page 0 of AS

(unused)

page 2 of AS

(unused)

page 1 of AS

SUMMARY:PAGING
“arse <

page frame 0 of physical memory

page frame 1

page frame 2

page frame 3

page frame 4

page frame 5

page frame 6

page frame 7

ADVANTAGES OF PAGING

No external fragmentation

— Any page can be placed in any frame in physical memory
Fast to allocate and free

— Alloc: No searching for suitable free space

— Free: Doesn’t have to coalesce with adjacent free space

Simple to swap-out portions of memory to disk (later lecture)
— Page size matches disk block size
— Can run process when some pages are on disk

— Add “present” bit to PTE

DISADVANTAGES OF PAGING

Internal fragmentation: Page size may not match size needed by process
— Woasted memory grows with larger pages
— Tension?

Additional memory reference\to page table = Very inefficient
— Page table must be stored in memory
— MMU stores only base address of page table
r X . T
Storage for page tables may be substantial
——Simple page table: Requires PTE for all pages in address space
Entry needed even if page not allocated ?

PAGING TRANSLATION STEPS

For each mem reference:

|. extract VPN (virt page num) from VA (virt addr)
2. calculate addr of PTE (page table entry)

3.read PTE from memory

4. extract PFN (page frame num)

5. build PA (phys addr)
6. read contents of PA from memory into register

Which expensive step will we avoid next!?

EXAMPLE: ARRAY ITERATOR

int sum = 0;
for (i=0; i<N; i++){
sum += a[i];

Assume ‘@’ starts at 0x3000
lgnore instruction fetches
and access to ‘1’

What virtual addresses?

load 0x3000

load 0x3004

load 0x3008

load 0x300C

What physical addresses!?

load Ox100C
load 0x7000
load Ox100C
load 0x7004
load Ox100C
load 0x7008
load Ox100C
load 0x700C

STRATEGY: CAGHE PAGE TRANSLATIONS

TLB: TRANSLATION LOOKASIDE BUFFER

TLB Entry

TLB ORGANIZATION

Tag (virtual page number)

Physical page number (page table entry)

N O

A B C D
|

Fully associative

Any given translation can
Hardware will search the

| A/ % | | |

be anywhere in the TLB
entire TLB in parallel

ARRAY [TERATOR (W/ TLB)

Assume following virtual address stream:

int sum = ©; load Ox 1000

for (i = @; i < 2048; i++){ |5ad 0x]004
sum += a[i];
} load 0x 1008

Assume ‘@’ starts at O0x1000 load Ox 100C
lgnore instruction fetches
and access to ‘1’

What will TLB behavior look like?

TLB ACCESSES: SEQUENTIAL EXAMPLE

0 k& TN < PTER
PT
4 KB P \PI pagetable
8 KB 1 5 4 ..
e
16 KB CPU’sTLB
Pl Valid [VPN |PPN

20 KB
Pl I I 5

e EEEEEEEE
28 KB

TLB ACCESSES: SEQUENTIAL EXAMPLE

0 ke INETIN < PTBR
PT
4 KB P XPI pagetable
8 KB 1 5 4 ..
oom
16 KB CPU’s TLB
PI i
20 KB Valid |VPN |PPN
Pl I I 5
4 = pEIEmERE
28 KB

Virt

load 0x1000
load Ox 1004
load 0x1008
load Ox100c

load 0x2000
load 0x2004

Phys

load 0x0004
load 0x5000
(TLB hit)
load 0x5004
(TLB hit)
load 0x5008
(TLB hit)
load 0x500C

load 0x0008
load 0x4000
(TLB hit)

load 0x4004

PERFORMANCE OF TLB?

int sum = 0;
for (i=0; i1<2048; i++) {
sum += a[i];

}

Would hit rate get better or worse
with smaller pages!?

Miss rate of TLB: # TLB misses / # TLB lookups
TLB lookups? number of accesses to a = 2048

TLB misses!?
= number of unique pages accessed
= 2048 / (elements of ‘2’ per 4K page)
= 2K / (4K / sizeof(int)) = 2K / IK
=2

Miss rate? =2/2048 = 0.1%

Hit rate? (I — miss rate) = 99.9%

TLB PERFORMANCE

How can system improve hit rate given fixed number of TLB entries?

Increase page size:

Fewer unique page translations needed to access same amount of memory

TLB Reach: Number of TLB entries * Page Size

TLB PERFORMANCE WITH WORKLOADS

Sequential array accesses almost always hit in TLB
— Very fast!
What access pattern will be slow?

— Highly random, with no repeat accesses

WORKLOAD ACCESS PATTERNS

Workload A Workload B
int sum = 0; int sum = 0;
for (i=0; i<2048; i++) { srand(1234);
sum += a[i]; for (i=0; i<1000; i++) {
y sum += ;
}
srand(1234);
for (i=0; 1<1000; i++) {
sum +=

}

address

WORKLOAD AGCESS PATTERNS

Spatial Locality Temporal Locality

Sequential Accesses Repeated Random Accesses

address

time time

WORKLOAD LOCALITY

Spatial Locality: future access will be to nearby addresses
Temporal Locality: future access will be repeats to the same data

What TLB characteristics are best for each type!?
Spatial:
— Access same page repeatedly; need same vpn = ppn translation
— Same TLB entry re-used
Temporal:
— Access same address near in future
— Same TLB entry re-used in near future

— How near in future?! How many TLB entries are there!?

OTHER TLB CHALLENGES

How to replace TLB entries ? LRU ? Random ?

TLB on context switches ? HW or OS ?

NEXT STEPS

Project |b: Due tomorrow!

Project 2a: Out tomorrow
Discussion today: Process API, Project 2a

Next class: More TLBs and better pagetables!

