
 MEMORY VIRTUALIZATION

Shivaram Venkataraman
CS 537, Spring 2019

ADMINISTRIVIA

-  Project 1b is due Friday
-  Project 1a grades later today

-  New office hour schedule posted on Piazza
-  Last call for midterm makeup requests (email or Piazza)

AGENDA / LEARNING OUTCOMES

Memory virtualization
 What are main techniques to virtualize memory?
 What are their benefits and shortcomings?

RECAP

SHIVARAM’S HOMEWORK

MEMORY VIRTUALIZATION

Transparency: Process is unaware of sharing

Protection: Cannot corrupt OS or other process memory

Efficiency: Do not waste memory or slow down processes

Sharing: Enable sharing between cooperating processes

ABSTRACTION: ADDRESS SPACE

16KB

15KB

2KB

1KB

0KB

Stack

(free)

Heap

Program Code the code segment:
where instructions live

the heap segment:
contains malloc’d data

dynamic data structures
(it grows downward)

(it grows upward)
the stack segment:

contains local variables
arguments to routines,

return values, etc. 512KB

448KB

384KB

320KB

256KB

192KB

128KB

64KB

0KB

(free)

(free)

(free)

(free)

Operating System
(code, data, etc.)

Process A
(code, data, etc.)

Process B
(code, data, etc.)

Process C
(code, data, etc.)

MEMORY VIRTUALIZATION: MECHANISMS

HOW TO VIRTUALIZE MEMORY

Problem: How to run multiple processes simultaneously?
Addresses are “hardcoded” into process binaries
How to avoid collisions?

Possible Solutions for Mechanisms (covered today):

1.  Time Sharing
2.  Static Relocation
3.  Base
4.  Base+Bounds

code
data
Program

Memory

TIME SHARE MEMORY: EXAMPLE

code
data
Program

Memory

TIME SHARE MEMORY: EXAMPLE

PROBLEMS WITH TIME SHARING?

Ridiculously poor performance

Better Alternative: space sharing!

 At same time, space of memory is divided across processes
 Remainder of solutions all use space sharing

2) Static Relocation

Idea: OS rewrites each program before loading it as a process in memory
Each rewrite for different process uses different addresses and pointers
Change jumps, loads of static data

•  0x10:movl0x8(%rbp), %edi !
•  0x13:addl$0x3, %edi !
•  0x19:movl%edi, 0x8(%rbp) !

0x1010: movl 0x8(%rbp), %edi !
0x1013: addl $0x3, %edi !
0x1019: movl %edi, 0x8(%rbp) !

0x3010:movl 0x8(%rbp), %edi !
0x3013:addl $0x3, %edi !
0x3019:movl %edi, 0x8(%rbp) !

rewrite

rewrite

(free)

Program Code

stack

Heap

(free)

Program Code

stack

Heap

(free)

(free)

(free)
4 KB

8 KB

12 KB

16 KB

process 1

process 2

0x1010: movl 0x8(%rbp), %edi !
0x1013: addl $0x3, %edi !
0x1019: movl %edi, 0x8(%rbp) !

0x3010:movl 0x8(%rbp), %edi !
0x3013:addl $0x3, %edi !
0x3019:movl %edi, 0x8(%rbp) !

Static: Layout in Memory

Q: Why didn’t OS rewrite stack addr?

Static Relocation: Disadvantages

No protection
–  Process can destroy OS or other processes
–  No privacy

Cannot move address space after it has been placed

–  May not be able to allocate new process

3) Dynamic Relocation
Goal: Protect processes from one another
Requires hardware support

–  Memory Management Unit (MMU)
MMU dynamically changes process address at every memory reference

–  Process generates logical or virtual addresses (in their address space)
–  Memory hardware uses physical or real addresses

CPU MMU
Memory

Process runs here OS can control MMU

Logical address Physical address

Hardware Support for Dynamic Relocation
Two operating modes

Privileged (protected, kernel) mode: OS runs
•  When enter OS (trap, system calls, interrupts, exceptions)
•  Allows certain instructions to be executed

–  Can manipulate contents of MMU
•  Allows OS to access all of physical memory

User mode: User processes run
•  Perform translation of logical address to physical address

Implementation of Dynamic Relocation: BASE REG
Translation on every memory access of user process
MMU adds base register to logical address to form physical address

base mode registers
32 bits 1 bit

mode
=

user?
no

yes

+
base

logical
address

physical
address

MMU

Dynamic Relocation with Base Register

Translate virtual addresses to physical by adding a fixed offset each time.
Store offset in base register

Each process has different value in base register
Dynamic relocation by changing value of base register!

P1

P2
4 KB

5 KB

6 KB

2 KB

3 KB

1 KB

0 KB

same code

VISUAL Example of DYNAMIC RELOCATION:
BASE REGISTER

P1: load 100, R1

Virtual

P2: load 100, R1

P2: load 1000, R1

P1: load 1000, R1

P1

P2
4 KB

5 KB

6 KB

2 KB

3 KB

1 KB

0 KB

VISUAL Example of DYNAMIC RELOCATION:
BASE REGISTER

P1: load 100, R1

Virtual

P2: load 100, R1

P2: load 1000, R1

P1: load 1000, R1

Quiz: Who Controls the Base Register?

What entity should do translation of addresses with base register?
 (1) process, (2) OS, or (3) HW

What entity should modify the base register?

 (1) process, (2) OS, or (3) HW

P1

P2
4 KB

5 KB

6 KB

2 KB

3 KB

1 KB

0 KB

P1: load 100, R1 load 1124, R1
Virtual Physical

P2: load 100, R1 load 4196, R1
P2: load 1000, R1 load 5196, R1
P1: load 100, R1 load 2024, R1

Can P2 hurt P1?
Can P1 hurt P2?

How well does dynamic relocation do with base register for protection?

P1

P2
4 KB

5 KB

6 KB

2 KB

3 KB

1 KB

0 KB

P1: load 100, R1 load 1124, R1
Virtual Physical

P2: load 100, R1 load 4196, R1
P2: load 1000, R1 load 5196, R1
P1: load 100, R1 load 2024, R1

Can P2 hurt P1?
Can P1 hurt P2?

P1: store 3072, R1 store 4096, R1 (3072 + 1024)

How well does dynamic relocation do with base register for protection?

4) Dynamic with Base+Bounds

Idea: limit the address space with a bounds register

Base register: smallest physical addr (or starting location)
Bounds register: size of this process’s virtual address space

–  Sometimes defined as largest physical address (base + size)

OS kills process if process loads/stores beyond bounds

Implementation of BASE+BOUNDS
Translation on every memory access of user process
•  MMU compares logical address to bounds register
 if logical address is greater, then generate error
•  MMU adds base register to logical address to form physical address

base mode bounds registers
32 bits 32 bits 1 bit

mode
=

user?

<
bounds?

no

no

yes

yes +
base

error

logical
address

physical
address

P1

P2
4 KB

5 KB

6 KB

2 KB

3 KB

1 KB

0 KB

base register

P1 is running
bounds register

P1

P2
4 KB

5 KB

6 KB

2 KB

3 KB

1 KB

0 KB

P2 is running

base register

bounds register

P1

P2
4 KB

5 KB

6 KB

2 KB

3 KB

1 KB

0 KB

P1: load 100, R1 load 1124, R1
Virtual Physical

P2: load 100, R1 load 4196, R1
P2: load 1000, R1 load 5196, R1
P1: load 100, R1 load 2024, R1

Can P1 hurt P2?

P1: store 3072, R1

Managing Processes with Base and Bounds
Context-switch: Add base and bounds registers to PCB
Steps

–  Change to privileged mode
–  Save base and bounds registers of old process
–  Load base and bounds registers of new process
–  Change to user mode and jump to new process

Protection requirement
•  User process cannot change base and bounds registers
•  User process cannot change to privileged mode

Base and Bounds Advantages
Provides protection (both read and write) across address spaces
Supports dynamic relocation
 Can place process at different locations initially and also move address spaces

Simple, inexpensive implementation

 Few registers, little logic in MMU
Fast

 Add and compare in parallel

Base and Bounds DISADVANTAGES

Disadvantages
–  Each process must be allocated contiguously in physical memory
 Must allocate memory that may not be used by process

–  No partial sharing: Cannot share limited parts of address space

Stack

Code

Heap

0

2n-1

5) Segmentation

Divide address space into logical segments
–  Each segment corresponds to logical entity in address space
 (code, stack, heap)

Each segment has separate base + bounds register

2n-1

Stack

Code

Heap

0

Segmented Addressing

Process now specifies segment and offset within segment
How does process designate a particular segment?

–  Use part of logical address
•  Top bits of logical address select segment
•  Low bits of logical address select offset within segment

What if small address space, not enough bits?

–  Implicitly by type of memory reference
–  Special registers

Segmentation Implementation

Segment Base Bounds R W

0 0x2000 0x6ff 1 0

1 0x0000 0x4ff 1 1

2 0x3000 0xfff 1 1

3 0x0000 0x000 0 0

MMU contains Segment Table (per process)
•  Each segment has own base and bounds, protection bits
•  Example: 14 bit logical address, 4 segments;

remember:
1 hex digit à 4 bits

How many bits
for segment?

How many bits
for offset?

heap (seg1)

stack (seg2)
0x1600

0x2000

0x2400

0x800

0x1200

0x400

0x00

load 0x2010, R1

Virtual (hex) Physical

Segment numbers:
 0: code+data
 1: heap
 2: stack

Visual Interpretation

heap (seg1)

stack (seg2)

load 0x2010, R1

Virtual (hex) Physical
0x1600 + 0x010 = 0x1610

Segment numbers:
 0: code+data
 1: heap
 2: stack

0x1600

0x2000

0x2400

0x800

0x1200

0x400

0x00

heap (seg1)

stack (seg2)

load 0x2010, R1

Virtual Physical

load 0x1010, R1

load 0x1100, R1

Segment numbers:
 0: code+data
 1: heap
 2: stack

0x1600

0x2000

0x2400

0x800

0x1200

0x400

0x00

0x1600 + 0x010 = 0x1610

Quiz: Address Translations with Segmentation

Segment	 Base	 Bounds	 R	W	
0	 0x2000	 0x6ff	 1	0	
1	 0x0000	 0x4ff	 1	1	
2	 0x3000	 0xfff	 1	1	
3	 0x0000	 0x000	 0	0	

Translate logical (in hex) to physical

0x0240:

0x1108:

0x265c:

0x3002: Remember:

1 hex digità4 bits

HOW DO STACKS GROW ?

Stack goes 16K à 12K, in physical memory is 28K à 24K
Segment base is at 28K

Virtual address 0x3C00 = 15K
 à top 2 bits (0x3) segment ref, offset is 0xC00 = 3K
How do we make CPU translate that ?

Negative offset = subtract max segment from offset
 = 3K – 4K = -1K
Add to base = 28K – 1K = 27K

16KB

15KB

2KB

1KB

0KB

Stack

(free)

Heap

Program Code the code segment:
where instructions live

the heap segment:
contains malloc’d data

dynamic data structures
(it grows downward)

(it grows upward)
the stack segment:

contains local variables
arguments to routines,

return values, etc.

HOW DOES THIS LOOK IN x86

Stack Segment (SS): Pointer to the stack
Code Segment (CS): Pointer to the code
Data Segment (DS): Pointer to the data

Extra Segment (ES): Pointer to extra data
F Segment (FS): Pointer to more extra data
G Segment (GS). Pointer to still more extra data

Advantages of Segmentation

Enables sparse allocation of address space
Stack and heap can grow independently
•  Heap: If no data on free list, dynamic memory allocator requests more from OS

 (e.g., UNIX: malloc calls sbrk())
•  Stack: OS recognizes reference outside legal segment, extends stack implicitly

Different protection for different segments
•  Enables sharing of selected segments
•  Read-only status for code

Supports dynamic relocation of each segment

Disadvantages of Segmentation

Each segment must be allocated contiguously

May not have sufficient physical memory for large segments?

External Fragmentation

FRAGMENTATION

NEXT STEPS

Project 1b: Due Friday, Feb 8th

Next class: Paging, TLBs and more!

