
MEMORY: TLBS, SMALLER PAGETABLES 

Shivaram Venkataraman 
CS 537, Spring 2019 



ADMINISTRIVIA 

-  Project 2a is due Friday 
-  Project 1b grades this week 

-  Midterm makeup emails 
 



AGENDA / LEARNING OUTCOMES 

Memory virtualization 
 What are the challenges with paging ? 
 How we go about addressing them? 

 



RECAP 



Review: Match Description 
Name of approach 

Candidates: Segmentation, Static Relocation, Base, Base+Bounds, Time Sharing 

Description 

1.  one process uses RAM at a time
2.  rewrite code and addresses before running
3.  add per-process starting location to virt addr 

to obtain phys addr

4.  dynamic approach that verifies address is in 
valid range

5.  several base+bound pairs per process



FRAGMENTATION 

Types of fragmentation 
External: Visible to allocator (e.g., OS) 
Internal: Visible to requester  

useful 
free 

Internal 

Definition: Free memory that can’t be usefully allocated 



Paging 
Goal: Eliminate requirement that address space is contiguous 

Eliminate external fragmentation 
Grow segments as needed 
 

Idea:  
Divide address spaces and physical  
memory into fixed-sized pages 

 
Size: 2n, Example: 4KB 

Process 1 Process 2 

Logical View 

Ph
ys

ic
al

 V
ie

w
 

Process 3 



PAGETABLES 

What is a good data structure ? 
 
Simple solution: Linear page table aka array 

VPN 
0 

2^n 



PAGING TRANSLATION STEPS 

For each mem reference: 
 

 1. extract VPN (virt page num) from VA (virt addr) 
 2. calculate addr of PTE (page table entry) 
 3. read PTE from memory 
 4. extract PFN (page frame num) 
 5. build PA (phys addr) 
 6. read contents of PA from memory into register 



Memory Accesses with Paging 

0x0040:	movl 	0x1400,	%edi	

Assume PT is at phys addr 0x3000 
Assume PTE’s are 4 bytes 
Assume 4KB pages 
How many bits for offset? 12  

Simplified view 
of page table 

2 
0 
3 
1 

Fetch instruction at logical addr 0x0040

•  Access page table to get ppn for vpn __

•  Mem ref 1:

•  Learn vpn __ is at ppn ___

•  Fetch instruction at ______  (Mem ref 2)

 Exec, load from logical addr 0x1400

•  Access page table to get ppn for vpn ___

•  Mem ref 3:

•  Learn vpn ___ is at ppn ___

•  Movl from _____ into reg (Mem ref 4)



QUIZ: HOW BIG IS A PAGETABLE? 

How big is a typical page table? 
 - assume 32-bit address space 
 - assume 4 KB pages 
 - assume 4 byte entries 



Disadvantages of Paging 
Additional memory reference to page table à Very inefficient 

–  Page table must be stored in memory 
–  MMU stores only base address of page table 
 
 

Storage for page tables may be substantial 
–  Simple page table: Requires PTE for all pages in address space 
     Entry needed even if page not allocated ? 



Example: Array Iterator 

int	sum	=	0;	
for	(i=0;	i<N;	i++){	

	sum	+=	a[i];	
}	

load 0x3000 

load 0x3004 

load 0x3008 

load 0x300C 

 

What virtual addresses? 

load 0x100C 
load 0x7000 
load 0x100C 
load 0x7004 
load 0x100C 
load 0x7008 
load 0x100C 
load 0x700C 

What physical addresses? 

Assume ‘a’ starts at 0x3000
Ignore instruction fetches
and access to ‘i’



Strategy: Cache Page Translations 

CPU RAM

memory interconnect 

PT 
Translation Cache 



TLB: TRANSLATION LOOKASIDE BUFFER 



TLB Organization 

A B C D E L M N O P

Fully associative

Tag (virtual page number) Physical page number (page table entry)

TLB Entry

Any given translation can be anywhere in the TLB 
Hardware will search the entire TLB in parallel 



Array Iterator (w/ TLB) 

int	sum	=	0;	
for	(i	=	0;	i	<	2048;	i++){	

	sum	+=	a[i];	
}	

Assume following virtual address stream: 
load 0x1000 
 
load 0x1004 
 
load 0x1008 
 
load 0x100C 
… 

What will TLB behavior look like? 

Assume ‘a’ starts at 0x1000
Ignore instruction fetches
and access to ‘i’



P1

P2

P2

P1

PT

P1

16 KB 

20 KB 

24 KB 

8 KB 

12 KB 

4 KB 

0 KB 
PT

P1 pagetable 
1 5 4 …

P2
28 KB 

TLB Accesses: SEQUENTIAL Example 

0 1 2 3 

CPU’s TLB 

PTBR 

Valid VPN PPN 

Virt

load 0x1000 
load 0x1004 
load 0x1008 
load 0x100c 
… 
load 0x2000 
load 0x2004 

Phys



Virt Phys

P1

P2

P2

P1

PT

P1

16 KB 

20 KB 

24 KB 

8 KB 

12 KB 

4 KB 

0 KB 
PT

P1 pagetable 
1 5 4 …

P2
28 KB 

TLB Accesses: SEQUENTIAL Example 

load 0x1000 
load 0x1004 
load 0x1008 
load 0x100c 
… 
load 0x2000 
load 0x2004 

load 0x0004 
load 0x5000 
(TLB hit) 
load 0x5004 
(TLB hit) 
load 0x5008 
(TLB hit) 
load 0x500C 
… 
load 0x0008 
load 0x4000 
(TLB hit) 
load 0x4004 

0 1 2 3 

CPU’s TLB 

PTBR 

Valid VPN PPN 

1 
1 

1 
2 

5 
4 



Performance OF TLB? 

int	sum	=	0;	
for	(i=0;	i<2048;	i++)	{	

	sum	+=	a[i];	
}	

Miss rate of TLB:  # TLB misses / # TLB lookups 
 
# TLB lookups? number of accesses to a = 
 
# TLB misses? 

 = number of unique pages accessed 
  

 
 
 
Miss rate?   
 
 
Hit rate?  

Would hit rate get better or worse 
with smaller pages? 



TLB PERFORMANCE with Workloads 

Sequential array accesses almost always hit in TLB 
–  Very fast! 

What access pattern will be slow? 
–  Highly random, with no repeat accesses 



Workload acCESS PATTERNS 

int	sum	=	0;	
for	(i=0;	i<2048;	i++)	{	

	sum	+=	a[i];	
}	

int	sum	=	0;	
srand(1234);	
for	(i=0;	i<1000;	i++)	{	
	sum	+=	a[rand()	%	N];	

}	
srand(1234);	
for	(i=0;	i<1000;	i++)	{	
	sum	+=	a[rand()	%	N];	

}	

Workload A Workload B 



time 

ad
dr

es
s 

Sequential Accesses 

time 
ad

dr
es

s 

Repeated Random Accesses 

… … 

Workload ACCESS PATTERNS 

Spatial Locality Temporal Locality 



Workload Locality 

Spatial Locality: future access will be to nearby addresses 
Temporal Locality: future access will be repeats to the same data 
 
What TLB characteristics are best for each type? 
Spatial: 

–  Access same page repeatedly; need same vpn à ppn translation 
–  Same TLB entry re-used 

Temporal: 
–  Access same address near in future 
–  Same TLB entry re-used in near future 
–  How near in future?  How many TLB entries are there? 



TLB Replacement policies 

LRU: evict Least-Recently Used TLB slot when needed 
(More on LRU later in policies next week) 

Random: Evict randomly choosen entry  
Which is better? 

A B C D E L M N O P 



LRU Troubles 

Valid Virt Phys 

0 ? ? 
0 ? ? 
0 ? ? 
0 ? ? 

virtual addresses:  

0 1 2 3 4 

Workload repeatedly accesses same offset (0x01) across 5 pages (strided access), 
but only 4 TLB entries 
 
What will TLB contents be over time? 
How will TLB perform? 
 
 



TLB Replacement policies 

LRU: evict Least-Recently Used TLB slot when needed 

(More on LRU later in policies next week) 

Random: Evict randomly choosen entry  

Sometimes random is better than a “smart” policy! 



Context Switches 

What happens if a process uses cached TLB entries from another process? 

1.  Flush TLB on each switch 
       Costly; lose all recently cached translations 

2.     Track which entries are for which process 
–  Address Space Identifier 
–  Tag each TLB entry with an 8-bit ASID 

How many ASIDs do we get? Why not use PIDs? 



P1
P2
P2
P1

PT 

P1

16 KB 

20 KB 

24 KB 

8 KB 

12 KB 

4 KB 

0 KB 

Virtual Physical

PT 

P2
28 KB 

PTBR 

load 0x1444 
load 0x1444 

P1 pagetable (ASID 11) 1 5 4 …
P2 pagetable (ASID 12) 6 2 3 …

Valid Virt Phys ASID 

0 1 9 11 
1 1 5 11 
1 1 2 12 
1 0 1 11 

TLB: 

TLB Example with ASID 

ASID: 12 

ASID: 11 



TLB Performance  

Context switches are expensive 
Even with ASID, other processes “pollute” TLB 

–  Discard process A’s TLB entries for process B’s entries 
 
Architectures can have multiple TLBs 

–  1 TLB for data, 1 TLB for instructions 
–  1 TLB for regular pages, 1 TLB for “super pages” 



HW and OS Roles 

Who Handles TLB MISS?  H/W or OS? 
 
H/W 
 
CPU must know where pagetables are 

–  CR3 register on x86 
–  Pagetable structure fixed and agreed upon between HW and OS 
–  HW “walks” the pagetable and fills TLB 

 



HW AND OS ROLES 

Who Handles TLB MISS?  H/W or OS? 

OS: 

CPU traps into OS upon TLB miss
“Software-managed TLB”

OS interprets pagetables as it chooses
Modifying TLB entries is privileged�
Need same protection bits in TLB as pagetable - rwx



TLB Summary 

Pages are great, but accessing page tables for every memory access is slow 
Cache recent page translations à TLB 

–  Hardware performs TLB lookup on every memory access 
TLB performance depends strongly on workload 

–  Sequential workloads perform well 
–  Workloads with temporal locality can perform well 

In different systems, hardware or OS handles TLB misses 
TLBs increase cost of context switches 

–  Flush TLB on every context switch 
–  Add ASID to every TLB entry 



Disadvantages of Paging 
Additional memory reference to page table à Very inefficient 

–  Page table must be stored in memory 
–  MMU stores only base address of page table 
 
 

Storage for page tables may be substantial 
–  Simple page table: Requires PTE for all pages in address space 
     Entry needed even if page not allocated ? 



SMALLER PAGE TABLES 



QUIZ: How big are page Tables? 

1.  PTE’s are 2 bytes, and 32 possible virtual page numbers�

2.  PTE’s are 2 bytes, virtual addrs are 24 bits, pages are 16 bytes�

3.  PTE’s are 4 bytes, virtual addrs are 32 bits, and pages are 4 KB�

4.  PTE’s are 4 bytes, virtual addrs are 64 bits, and pages are 4 KB�

How big is each page table?



code 
heap 

stack 

Virt Mem Phys Mem 

Waste! 

Why ARE Page Tables so Large? 



Many invalid PT entries 

PFN        valid   prot   

10   1   r-x
  -   0   -
  23   1   rw-
  -   0   -
  -   0   -
  -   0   -
  -   0   -
  -   0   -
  -   0   -
  -   0   -
  -   0   -
  28   1   rw-
  4   1   rw-
  

…many more invalid… how to avoid 
storing these? 



Use more complex page tables, instead of just big array 
Any data structure is possible with software-managed TLB 

•  Hardware looks for vpn in TLB on every memory access 
•  If TLB does not contain vpn, TLB miss 

–  Trap into OS and let OS find vpn->ppn translation  
–  OS notifies TLB of vpn->ppn for future accesses 

AVOID SIMPLE LINEAR PAGE TABLES? 



Other Approaches 

1.  Segmented Pagetables 
2.  Multi-level Pagetables 

–  Page the page tables 
–  Page the pagetables of page tables… 

3.  Inverted Pagetables 



valid Ptes are Contiguous 

Note “hole” in addr space:  
valids vs. invalids are clustered 
 
How did OS avoid allocating holes in phys 
memory? 

Segmentation 

PFN        valid   prot   

10   1   r-x
  -   0   -
  23   1   rw-
  -   0   -
  -   0   -
  -   0   -
  -   0   -
  -   0   -
  -   0   -
  -   0   -
  -   0   -
  28   1   rw-
  4   1   rw-
  

…many more invalid… how to avoid 
storing these? 



Combine Paging and Segmentation 

Divide address space into segments (code, heap, stack) 
–  Segments can be variable length 

Divide each segment into fixed-sized pages 
Logical address divided into three portions 

page offset (12 bits) page number (8 bits) seg # (4 bits) 

Implementation 
•  Each segment has a page table 
•  Each segment track base (physical address) and bounds of the page table 



Quiz: Paging and Segmentation 

seg		base	 bounds	 R	W	
0	 0x002000	 0xff	 1	0	
1	 0x000000	 0x00	 0	0	
2	 0x001000	 0x0f	 1	1	

...	
0x01f	
0x011	
0x003	
0x02a	
0x013	
...	
0x00c	
0x007	
0x004	
0x00b	
0x006	
...	

0x001000

0x0020000x002070	read:	
0x202016	read:	
0x104c84	read:	
0x010424	write:	
0x210014	write:	
0x203568	read:	

page offset (12 bits) page number (8 bits) seg # (4 bits) 



Advantages of Paging and Segmentation 

Advantages of Segments 
–  Supports sparse address spaces.  
–  Decreases size of page tables. If segment not used, not need for page table 

Advantages of Pages 
–  No external fragmentation 
–  Segments can grow without any reshuffling 
–  Can run process when some pages are swapped to disk (next lecture) 

Advantages of Both 
–  Increases flexibility of sharing 

•  Share either single page or entire segment 
•  How? 



Disadvantages of Paging and Segmentation 

Potentially large page tables (for each segment) 
–  Must allocate each page table contiguously 
–  More problematic with more address bits 
–  Page table size? 

•  Assume 2 bits for segment, 18 bits for page number, 12 bits for offset 

Each page table is:  
= Number of entries * size of each entry 
= Number of pages * 4 bytes  
= 2^18 * 4 bytes = 2^20 bytes = 1 MB!!! 



Other Approaches 

1.  Segmented Pagetables 
2.  Multi-level Pagetables 

–  Page the page tables 
–  Page the pagetables of page tables… 

3.  Inverted Pagetables 



Multilevel Page Tables 
Goal: Allow each page tables to be allocated non-contiguously 
 
 
Idea: Page the page tables  

–  Creates multiple levels of page tables; outer level “page directory” 
–  Only allocate page tables for pages in use 
–  Used in x86 architectures (hardware can walk known structure) 



Multilevel Page Tables 

outer page(8 bits) inner page (10 bits) page offset (12 bits) 

30-bit address: 

base of page directory 



Quiz: Multilevel  
PPN 

0x3 
 - 
 - 
 - 
 - 
 - 
 - 
 - 
 - 
 - 
 - 
 - 
 - 
 - 

 0x92 

valid 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 

page directory
PPN 
0x10 
 0x23 
 - 
 - 
 0x80 
 0x59 
 - 
 - 
 - 
 - 
 - 
 - 
 - 
 - 
 - 

valid 
1 
1 
0 
0 
1 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 

page of PT (@PPN:0x3)
PPN 
 -  
 - 
 - 
 - 
 - 
 - 
 - 
 - 
 - 
 - 
 - 
 - 
 - 
 0x55 
 0x45 

valid 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
1 

page of PT (@PPN:0x92)

translate 0x01ABC 

outer page(4 bits) inner page(4 bits) page offset (12 bits) 

20-bit address: 

 translate 0xFEED0 

translate 0x00000 



QUIZ: Address format for multilevel Paging 

How should logical address be structured? 
–  How many bits for each paging level? 

Goal?   
–  Each page table fits within a page 
–  PTE size * number PTE = page size 

•  Assume PTE size = 4 bytes 
•  Page size = 2^12 bytes = 4KB 
•  2^2 bytes *  number PTE = 2^12 bytes 
•  à number PTE = 2^10 

–  à # bits for selecting inner page = 10 
Remaining bits for outer page:  

–  30 – 10 – 12 = 8 bits 

outer page inner page page offset (12 bits) 
30-bit address: 



Problem with 2 levels? 

Problem: page directories (outer level) may not fit in a page 
 
Solution:  

–  Split page directories into pieces 
–  Use another page dir to refer to the page dir pieces. 

PT idx OFFSETPD idx 1
VPN 

PD idx 0

How large is virtual address space with 4 KB pages, 4 byte PTEs,  
each page table fits in page given 1, 2, 3 levels? 

4KB / 4 bytes à 1K entries per level 
1 level: 1K * 4K = 2^22 = 4 MB 
2 levels: 1K * 1K * 4K = 2^32 ≈ 4 GB 
3 levels: 1K * 1K * 1K * 4K = 2^42  ≈ 4 TB 

outer page? inner page (10 bits) page offset (12 bits) 
64-bit address: 



On TLB miss: lookups with more levels more expensive 
Assume 3-level page table 
Assume 256-byte pages 
Assume 16-bit addresses 
Assume ASID of current process is 211 

How many physical accesses for each instruction?  (Ignore previous ops changing TLB) 

(a) 0xAA10: movl 0x1111, %edi 

 

(b) 0xBB13: addl $0x3, %edi 

 
 
(c) 0x0519: movl %edi, 0xFF10 

ASID VPN PFN Valid 

211 0xbb 0x91 1 

211 0xff 0x23 1 

122 0x05 0x91 1 

211 0x05 0x12 0 

QUIZ: FULL SYSTEM WITH TLBS 



Inverted Page TAble 

Only need entries for virtual pages w/ valid physical mappings

Naïve approach: �
Search through data structure <ppn, vpn+asid> to find match

   Too much time to search entire table

Better: 
Find possible matches entries by hashing vpn+asid

  Smaller number of entries to search for exact match

Managing inverted page table requires software-controlled TLB



Other Approaches 

1.  Segmented Pagetables 
2.  Multi-level Pagetables 

–  Page the page tables 
–  Page the pagetables of page tables… 

3.  Inverted Pagetables 



NEXT STEPS 

Project 2a: Due Friday 
 
Next class:  Better pagetables, swapping! 


