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ADMINISTRIVIA

- Project 2b is out. Due Feb 24th, 10:00pm
- Project 1b grades very soon

Shivaram upcoming travel 
- No class on Feb 27. Guest lecture March 3
- Discussion

- No discussion Feb 20, Feb 27
- Discussion on Tue Feb 25 at 5.30pm



AGENDA / LEARNING OUTCOMES

Virtual memory: Summary
Concurrency

What is the motivation for concurrent execution?
What are some of the challenges?



RECAP



SWAPPING
OS goal: Support processes when not enough physical memory

– Single process with very large address space
– Multiple processes with combined address spaces

User code should be independent of amount of physical memory
– Correctness, if not performance



Present Bit

PFN valid prot present
10 1 r-x 1
- 0 - -
23 1 rw- 0

28 1 rw- 0
4 1 rw- 1

- 0 - -
- 0 - -
- 0 - -
- 0 - -
- 0 - -
- 0 - -
- 0 - -
- 0 - -

Phys Memory

Disk

What if access vpn 0xb?



Page Replacement POLICIES
OPT: Replace page not used for longest time in future

– Advantages: Guaranteed to minimize number of page faults
– Disadvantages: Requires that OS predict the future; Not practical

FIFO: Replace page that has been in memory the longest
– Advantages: Fair: All pages receive equal residency; Easy to implement
– Disadvantage: Some pages may always be needed

LRU: Least-recently-used: Replace page not used for longest time in past
– Advantages: With locality, LRU approximates OPT
– Disadvantages:

• Harder to implement, must track which pages have been accessed



Implementing LRU
Software Perfect LRU

– OS maintains ordered list of physical pages by reference time
– When page is referenced: Move page to front of list
– When need victim: Pick page at back of list
– Trade-off: Slow on memory reference, fast on replacement

Hardware Perfect LRU
– Associate timestamp register with each page
– When page is referenced: Store system clock in register
– When need victim: Scan through registers to find oldest clock
– Trade-off: Fast on memory reference, slow on replacement 

(especially as size of memory grows)



Clock Algorithm
Hardware

– Keep use (or reference) bit for each page frame
– When page is referenced: set use bit

Operating System
– Page Replacement:

• Keep pointer to last examined page frame
• Traverse pages in circular buffer
• Clear use bits as we search
• Stop when find page with already cleared use bit, replace this page



Clock: Look For a Page

0 1 2 3Physical Mem:

Use= Use= Use= Use=

clock hand

Use = 1, 1, 0, 1 at start

Page 0 is accessed

What should we evict?

What should we evict?



Clock Extensions

Replace multiple pages at once
– Intuition:  Expensive to run replacement algorithm and to write single block to disk
– Find multiple victims each time and track free list

Use dirty bit to give preference to dirty pages
– Intuition: More expensive to replace dirty pages

Dirty pages must be written to disk, clean pages do not
– Replace pages that have use bit and dirty bit cleared



SUMMARY: VIRTUAL MEMORY

Abstraction: Virtual address space with code, heap, stack
Address translation

- Contiguous memory: base, bounds, segmentation
- Using fixed sizes pages with page tables

Challenges with paging
- Extra memory references: avoid with TLB
- Page table size: avoid with multi-level paging, inverted page tables etc.

Larger address spaces: Swapping mechanisms, policies (LRU, Clock)



Review: Easy Piece 1

Virtualization

CPU

Memory

Context Switch

Schedulers

Segmentation

Paging

TLBs

Multilevel
Swapping

Allocation



CONCURRENCY



Motivation for Concurrency



Motivation
CPU Trend: Same speed, but multiple cores 
Goal: Write applications that fully utilize many cores

Option 1: Build apps from many communicating processes
– Example: Chrome (process per tab)
– Communicate via pipe() or similar

Pros?
– Don’t need new abstractions; good for security

Cons?
– Cumbersome programming
– High communication overheads
– Expensive context switching (why expensive?)



CONCURRENCY: Option 2

New abstraction: thread

Threads are like processes, except:

multiple threads of same process share an address space

Divide large task across several cooperative threads
Communicate through shared address space



Common Programming Models

Multi-threaded programs tend to be structured as:

– Producer/consumer
Multiple producer threads create data (or work) that is handled by one of 
the multiple consumer threads 

– Pipeline
Task is divided into series of subtasks, each of which is handled in series by 
a different thread

– Defer work with background thread
One thread performs non-critical work in the background (when CPU idle)



CPU 1 CPU 2
running
thread 1

running
thread 2

RAM

What state do threads share?



THREAD VS. Process

Multiple threads within a single process share:
– Process ID (PID) 
– Address space: Code (instructions), Most data (heap) 
– Open file descriptors 
– Current working directory 
– User and group id 

Each thread has its own 
– Thread ID (TID) 
– Set of registers, including Program counter and Stack pointer 
– Stack for local variables and return addresses 

(in same address space)



OS Support: Approach 1
User-level threads: Many-to-one thread mapping

– Implemented by user-level runtime libraries 
Create, schedule, synchronize threads at user-level 

– OS is not aware of user-level threads 
OS thinks each process contains only a single thread of control 

Advantages 
– Does not require OS support; Portable 
– Lower overhead thread operations since no system call

Disadvantages?
– Cannot leverage multiprocessors 
– Entire process blocks when one thread blocks



OS Support: Approach 2
Kernel-level threads: One-to-one thread mapping 
– OS provides each user-level thread with a kernel thread 
– Each kernel thread scheduled independently 
– Thread operations (creation, scheduling, synchronization) performed by OS 

Advantages 
– Each kernel-level thread can run in parallel on a multiprocessor 
– When one thread blocks, other threads from process can be scheduled 

Disadvantages 
– Higher overhead for thread operations
– OS must scale well with increasing number of threads



THREAD SCHEDULE

volatile int balance = 0;
int loops;

void *worker(void *arg) {
int i;
for (i = 0; i < loops; i++) {

balance++;
}
pthread_exit(NULL);

}

int main(int argc, char *argv[]) {
loops = atoi(argv[1]);
pthread_t p1, p2;
printf("Initial value : %d\n", balance);
Pthread_create(&p1, NULL, worker, NULL);
Pthread_create(&p2, NULL, worker, NULL);
Pthread_join(p1, NULL);
Pthread_join(p2, NULL);
printf("Final value   : %d\n", balance);
return 0;

}

» ./threads 100000
Initial value : 0
Final value   : 162901



Thread Schedule #1

0x195  mov 0x9000, %eax
0x19a  add $0x1, %eax
0x19d  mov %eax, 0x9000

Thread 1 Thread 2

%eax: 
%rip:

State:
0x9000: 100
%eax: 
%rip = 0x195

thread
control
blocks:

%eax: 
%rip:

balance = balance + 1; 
balance at 0x9cd4 



Thread Schedule #2

0x195  mov 0x9000, %eax
0x19a  add $0x1, %eax
0x19d  mov %eax, 0x9000

Thread 1 Thread 2

%eax: 
%rip:

State:
0x9000: 100
%eax: 
%rip = 0x195

thread
control
blocks:

%eax: 
%rip:

balance = balance + 1; 
balance at 0x9cd4 



TIMELINE VIEW

Thread 1 Thread 2
mov 0x123, %eax
add %0x1, %eax
mov %eax, 0x123

mov 0x123, %eax
add %0x2, %eax
mov %eax, 0x123



QUIZ 15 https://tinyurl.com/cs537-sp20-quiz15

Process A with threads TA1 and TA2 and process B with a thread TB1. 

1. With respect to TA1 and TA2 which of the following are true?

2. Which of the following are true with respect to TA1 and TB1?





Non-Determinism

Concurrency leads to non-deterministic results
– Different results even with same inputs
– race conditions

Whether bug manifests depends on CPU schedule!

How to program: imagine scheduler is malicious?!



What do we want?

Want 3 instructions to execute as an uninterruptable group 
That is, we want them to be atomic

mov 0x123, %eax
add %0x1, %eax
mov %eax, 0x123

More general: Need mutual exclusion for critical sections
if thread A is in critical section C, thread B isn’t
(okay if other threads do unrelated work)



Synchronization

Build higher-level synchronization primitives in OS
Operations that ensure correct ordering of instructions across threads
Use help from hardware

Motivation: Build them once and get them right

Monitors Semaphores
Condition Variables

Locks

Loads
Stores

Test&Set
Disable Interrupts



LOCKS



Locks
Goal: Provide mutual exclusion (mutex)

Allocate and Initialize
– Pthread_mutex_t mylock = PTHREAD_MUTEX_INITIALIZER;

Acquire
– Acquire exclusion access to lock; 
– Wait if lock is not available  (some other process in critical section)
– Spin or block (relinquish CPU) while waiting
– Pthread_mutex_lock(&mylock);

Release
– Release exclusive access to lock; let another process enter critical section
– Pthread_mutex_unlock(&mylock);



Lock Implementation Goals

Correctness 
– Mutual exclusion

Only one thread in critical section at a time
– Progress (deadlock-free)

If several simultaneous requests, must allow one to proceed
– Bounded (starvation-free)

Must eventually allow each waiting thread to enter

Fairness: Each thread waits for same amount of time
Performance: CPU is not used unnecessarily



Implementing Synchronization

Atomic operation: No other instructions can be interleaved

Approaches
- Disable interrupts
- Locks using loads/stores
- Using special hardware instructions



Implementing Locks: W/ Interrupts

Turn off interrupts for critical sections
- Prevent dispatcher from running another thread
- Code between interrupts executes atomically

Disadvantages?
Only works on uniprocessors
Process can keep control of CPU for arbitrary length
Cannot perform other necessary work

void acquire(lockT *l) {
disableInterrupts();

}

void release(lockT *l) {
enableInterrupts();

}



Implementing LOCKS: w/ Load+Store

Code uses a single shared lock variable

void release(Boolean *lock) {
*lock = false;

}

// shared variable
boolean lock = false;
void acquire(Boolean *lock) {

while (*lock) /* wait */ ;
*lock = true;

}

Does this work? What situation can cause this to not work?



Race Condition with LOAD and STORE

*lock == 0 initially

Thread 1 Thread 2    
while(*lock == 1)

while(*lock == 1)
*lock = 1

*lock = 1

Both threads grab lock!
Problem: Testing lock and setting lock are not atomic



NEXT STEPS

Project 2b: Out now

Next class: More about locks!

Reminder:
No discussion today!
Next discussion on Tue


