
CONCURRENCY: DEADLOCK

Shivaram Venkataraman
CS 537, Spring 2020

ADMINISTRIVIA

Midterm is on Wednesday 3/12 at 5.30pm-7pm, details on Piazza

Venue: If your last name starts with A-R, go to Humanities 3650
else (last name starts with S-Z), go to Psych 113

Bring your ID!
Calculators allowed
No cheat sheet

AEFIS SURVEY RESULTS

Thank you for the responses!

Points to improve
1. Upload slides earlier
2. Go slower
3. More details on project

AGENDA / LEARNING OUTCOMES

Concurrency
How do we build semaphores?
What are common pitfalls with concurrent execution?

RECAP

Concurrency Objectives

Mutual exclusion (e.g., A and B don’t run at same time)

solved with locks

Ordering (e.g., B runs after A does something)

solved with condition variables and semaphores

SEMAPHORE OPERATIONS

Wait or Test: sem_wait(sem_t*)
Decrements sem value by 1, Waits if value of sem is negative (< 0)

Signal or Post: sem_post(sem_t*)
Increment sem value by 1, then wake a single waiter if exists

Value of the semaphore, when negative = the number of waiting threads

Build Zemaphore!

Typedef struct {
int value;
cond_t cond;
lock_t lock;

} zem_t;

void zem_init(zem_t *s, int value) {
s->value = value;
cond_init(&s->cond);
lock_init(&s->lock);

}

Locks

Zemaphores

CV’s

zem_wait(): Waits while value <= 0, Decrement
zem_post(): Increment value, then wake a single waiter

Build Zemaphore from LOCKs AND CV

zem_wait(zem_t *s) {
lock_acquire(&s->lock);
while (s->value <= 0)

cond_wait(&s->cond);
s->value--;
lock_release(&s->lock);

}

zem_post(zem_t *s) {
lock_acquire(&s->lock);
s->value++;
cond_signal(&s->cond);
lock_release(&s->lock);

}

Locks

Zemaphores

CV’s
zem_wait(): Waits while value <= 0, Decrement
zem_post(): Increment value, then wake a single waiter

SUMMARY: Semaphores

Semaphores are equivalent to locks + condition variables
– Can be used for both mutual exclusion and ordering

Semaphores contain state
– How they are initialized depends on how they will be used
– Init to 0: Join (1 thread must arrive first, then other)
– Init to N: Number of available resources

sem_wait(): Decrement and waits if value < 0
sem_post() or sem_signal(): Increment value, then wake a single waiter (atomic)
Can use semaphores in producer/consumer and for reader/writer locks

CONCURRENCY BUGS

Lu etal. [ASPLOS 2008]:
For four major projects, search for concurrency bugs among >500K bug
reports. Analyze small sample to identify common types of concurrency bugs.

0

15

30

45

60

75

MySQL Apache Mozilla OpenOffice

B
ug
s

Atomicity Order Deadlock Other

Concurrency Study

Fix Atomicity Bugs with Locks

Thread 1:
pthread_mutex_lock(&lock);
if (thd->proc_info) {

…
fputs(thd->proc_info, …);
…

}
pthread_mutex_unlock(&lock);

Thread 2:

pthread_mutex_lock(&lock);
thd->proc_info = NULL;
pthread_mutex_unlock(&lock);

Fix Ordering bugs with Condition variables

Thread 2:

void mMain(…) {
…

mutex_lock(&mtLock);
while (mtInit == 0)
Cond_wait(&mtCond, &mtLock);

Mutex_unlock(&mtLock);

mState = mThread->State;
…

}

Thread 1:
void init() {

…

mThread =
PR_CreateThread(mMain, …);

pthread_mutex_lock(&mtLock);
mtInit = 1;
pthread_cond_signal(&mtCond);
pthread_mutex_unlock(&mtLock);

…
}

Deadlock

No progress can be made because two or more threads are waiting
for the other to take some action and thus neither ever does

Code Example

Thread 2:

lock(&B);
lock(&A);

Thread 1:

lock(&A);
lock(&B);

Circular Dependency

Lock A

Lock B

Thread 1

Thread 2

holds

holds

wanted
by

wanted
by

Fix Deadlocked Code

Thread 2Thread 1

Thread 2:

lock(&B);
lock(&A);

Thread 1:

lock(&A);
lock(&B);

Non-circular Dependency

Lock A

Lock B

Thread 1

Thread 2

holds

wanted
by

wanted
by

set_t *set_intersection (set_t *s1, set_t *s2) {
set_t *rv = malloc(sizeof(*rv));
mutex_lock(&s1->lock);
mutex_lock(&s2->lock);
for(int i=0; i<s1->len; i++) {

if(set_contains(s2, s1->items[i])
set_add(rv, s1->items[i]);

mutex_unlock(&s2->lock);
mutex_unlock(&s1->lock);

}

Thread 1: rv = set_intersection(setA, setB);

Thread 2: rv = set_intersection(setB, setA);

Encapsulation
Modularity can make it harder to see deadlocks

Solution?

if (m1 > m2) {
// grab locks in high-to-low address order
pthread_mutex_lock(m1);
pthread_mutex_lock(m2);

} else {
pthread_mutex_lock(m2);
pthread_mutex_lock(m1);

}

Any other problems?

QUIZ 19

T1 foo(a,b,c)
T2 foo(b,c,a)
T3 foo(c,a,b)

T1 foo(a,b,c)
T2 foo(a,b,c)
T3 foo(a,b,c)

T1 foo(a,b,c)
T2 foo(b,c,e)
T3 foo(f,e,a)

https://tinyurl.com/cs537-sp20-quiz19

Deadlock Theory

Deadlocks can only happen with these four conditions:
1. mutual exclusion
2. hold-and-wait
3. no preemption
4. circular wait

Can eliminate deadlock by eliminating any one condition

1. Mutual Exclusion

Problem: Threads claim exclusive control of resources that they require
Strategy: Eliminate locks!
Try to replace locks with atomic primitive:

int CompareAndSwap(int *address, int expected, int new) {
if (*address == expected) {

*address = new;
return 1; // success

}
return 0; // failure

}

Wait-Free Algorithm: Linked List Insert

void insert (int val) {
node_t *n = Malloc(sizeof(*n));
n->val = val;
lock(&m);
n->next = head;
head = n;
unlock(&m);

}

void insert (int val) {
node_t *n = Malloc(sizeof(*n));
n->val = val;
do {

n->next = head;
} while (!CompAndSwap(&head,

n->next, n));
}

2. Hold-and-Wait
Problem: Threads hold resources allocated to them while waiting for additional
resources

Strategy: Acquire all locks atomically once. Can release locks over time, but
cannot acquire again until all have been released

How to do this? Use a meta lock:

Disadvantages?

3. No preemption

Problem: Resources (e.g., locks) cannot be forcibly removed from threads that are
Strategy: if thread can’t get what it wants, release what it holds

top:
lock(A);
if (trylock(B) == -1) {

unlock(A);
goto top;

}
…

Disadvantages?

4. Circular Wait

Circular chain of threads such that each thread holds a resource (e.g., lock)
being requested by next thread in the chain.

Strategy:
- decide which locks should be acquired before others
- if A before B, never acquire A if B is already held!
- document this, and write code accordingly

Works well if system has distinct layers

CONCURRENCY SUMMARY SO FAR

Motivation: Parallel programming patterns, multi-core machines

Abstractions, Mechanisms
- Spin Locks, Ticket locks
- Queue locks
- Condition variables
- Semaphores

Concurrency Bugs

LOOKING AHEAD

Midterm on Thursday!

Thursday class:
Summary,
More quizzes?
In-class OH?

