CONCURRENCY: DEADLOCK

Shivaram Venkataraman
CS 537, Spring 2020

ADMINISTRIVIA

Midterm is on Wednesday 3/12 at 5.30pm-7pm, details on Piazza

Venue: If your last name starts with A-R, go to Humanities 3650

else (last name starts with S-Z), go to Psych |13

Bring your ID!
Calculators allowed
No cheat sheet

AEFIS SURVEY RESULTS

Thank you for the responses!

Points to improve

|. Upload slides earlier 3 1 0/
2. Go slower 0,
Response Rate

. detail '
3. More details on project 92 of 300

AGENDA / LEARNING OUTCOMES

Concurrency
How do we build semaphores!?

What are common pitfalls with concurrent execution!?

RECAP

CONGURRENGY OBJECTIVES

Mutual exclusion (e.g.,A and B don’t run at same time)

solved with locks

Ordering (e.g., B runs after A does something)

solved with condition variables and semaphores

SEMAPHORE OPERATIONS

Wait or Test: sem_wait(sem_t*)
Decrements sem value by |,Waits if value of sem is negative (< 0)

Signal or Post: sem_post(sem_t*)
Increment sem value by |, then wake a single waiter if exists

Value of the semaphore, when negative = the number of waiting threads

BUILD ZEMAPHORE!

zem_ wait(): Waits while value <= 0, Decrement
Typedef struct { zem_post(): Increment value, then wake a single waiter
int value;
cond_t cond;

void zem init(zem_ t *s, int value) {
s->value = value;
cond _init(&s->cond);
lock init(&s->lock);

BUILD ZEMAPHORE FROM LOCKS AND CV

zem _wait(zem t *s) { zem _post(zem t *s) {
lock _acquire(&s->lock); lock _acquire(&s->lock);
while (s->value <= 0) s->value++;
cond wait(&s->cond); cond signal(&s->cond);
s->value--; lock _release(&s->lock);
lock _release(&s->lock); }
}

zem_ wait():Waits while value <= 0, Decrement

zem_post(): Increment value, then wake a single waiter ———

SUMMARY: SEMAPHORES

Semaphores are equivalent to locks + condition variables
— Can be used for both mutual exclusion and ordering
Semaphores contain state
— How they are initialized depends on how they will be used
— Init to O:Join (| thread must arrive first, then other)

— Init to N: Number of available resources

sem_wait(): Decrement and waits if value < 0
sem_post() or sem_signal(): Increment value, then wake a single waiter (atomic)
Can use semaphores in producer/consumer and for reader/writer locks

CONGURRENCY BUGS

CONGURRENGY STUDY

| Atomicity ® Order m Deadlock m Other
75

60

¢ 45

=)

@ 30
15

MySQL Apache Mozilla OpenOffice

Lu etal. [ASPLOS 2008]:

For four major projects, search for concurrency bugs among >500K bug
reports. Analyze small sample to identify common types of concurrency bugs.

FIX ATOMICITY BUGS WITH LOCKS

Thread 1: Thread 2:
th tex_lock(&lock);
o Cendoprouinter L7 pthresd_nutex_lock(Slock)

thd—>proc_info = NULL;

- pthread_mutex_unlock(&lock);
fputs(thd->proc_info, ..);

5
pthread_mutex_unlock(&lock);

FIX ORDERING BUGS WITH CONDITION VARIABLES

Thread 1: Thread 2:

4 init
v01."1n1 () { void mMain(..) {

mThread =

PR _CreateThread(mMain, ..); mutex_Lock(&mtLocR);
while (mtInit == 0)
pthread mutex Lock(&mtLocR); Cond_wait(&mtCond, &mtLocR);
mtInit = 1; Mutex unlock(&mtLocR);
pthread cond signal (&mtCond);
pthread mutex_unlock(&mtLock); mState = mThread->State;
}

DEADLOCK

No progress can be made because two or more threads are waiting
for the other to take some action and thus neither ever does

CODE EXAMPLE

Thread I: Thread 2:

lock(&A); lock(&B);
lock(&B); lock(&A);

CIRGULAR DEPENDENGY

Lock B

@ holds [
wanted wanted
by by

holds @

FIX DEADLOCKED CODE

Thread 1: Thread 2:
lock (&A); lock(&B);
lock(&B); lock(&A);

Thread 1 Thread 2

NON-CIRCULAR DEPENDENCY

@ holds —

wanted wanted
by by
Lock B @

set_t *set_intersection (set t *sl1l, set t *s2) {
set_t *rv = malloc(sizeof(*rv));
mutex_lock(&sl1l->lock);
mutex_lock(&s2->lock);
for(int 1=0; i<sl->len; i++) {
if(set _contains(s2, sl->items[i])
set_add(rv, sl->items[i]);
mutex_unlock(&s2->1lock);
mutex_unlock(&s1->1lock);

Thread 1: rv = set _intersection(setA, setB);

Thread 2: rv = set _intersection(setB, setA);

ENCAPSULATION

Modularity can make it harder to see deadlocks

Solution?

if (m1 > m2) {
// grab locks in high-to-low address order
pthread mutex lock(ml);
pthread mutex lock(m2);

} else {
pthread mutex lock(m2);
pthread mutex lock(ml);

Any other problems!?

5% 5]

0U|Z 1 9 https://tinyurl.com/cs537-sp20-quiz |9

void foo(pthread_mutex_t *t1, pthread_mutex_t #*t2, , pthread_mutex_t #*t3) { .

pthread_mutex_lock(t1); E

pthread_mutex_lock(t2);
pthread_mutex_lock(t3);

T foo(a,b,c) T1 foo(a,b,c) T1 foo(a,b,c)
do_stuffs(); T2 foo(b,c,a) T2 foo(a,b,c) T2 foo(b,c,e)
pthread_mutex_unlock(t1); T3 foo(c,a,b) T3 foo(a,b,c) T3 foo(f,e,a)

pthread_mutex_unlock(t2);
pthread_mutex_unlock(t3);

DEADLOCK THEORY

Deadlocks can only happen with these four conditions:
|. mutual exclusion

2. hold-and-wait

3. no preemption

4. circular wait

Can eliminate deadlock by eliminating any one condition

1. MUTUAL EXCLUSION

Problem:Threads claim exclusive control of resources that they require

Strategy: Eliminate locks!
Try to replace locks with atomic primitive:

int CompareAndSwap(int *address, int expected, int new) {
if (*address == expected) {
*address = new;
return 1; // success

}

return 0@; // failure

WAIT-FREE ALGORITHM: LINKED LIST INSERT

void insert (int val) { void insert (int val) {

node_t *n = Malloc(sizeof(*n)); node_t *n = Malloc(sizeof(*n));
n->val = val; n->val = val;

lock(&m); do {

n->next = head; n->next = head;

head = n; } while (!CompAndSwap(&head,
unlock(&m); n->next, n));

2. HOLD-AND-WAIT

Problem:Threads hold resources allocated to them while waiting for additional
resources

Strategy: Acquire all locks atomically once. Can release locks over time, but
cannot acquire again until all have been released

How to do this? Use a meta lock:

Disadvantages!?

3. NO PREEMPTION

Problem: Resources (e.g., locks) cannot be forcibly removed from threads that are
Strategy: if thread can’t get what it wants, release what it holds

top:
lock(A);
if (trylock(B) == -1) { Disadvantages?
unlock(A);
goto top;

4. CIRCULAR WAIT

Circular chain of threads such that each thread holds a resource (e.g., lock)
being requested by next thread in the chain.

Strategy:
- decide which locks should be acquired before others
- if A before B, never acquire A if B is already held!

- document this, and write code accordingly

Works well if system has distinct layers

CONGCURRENCY SUMMARY SO FAR

Motivation: Parallel programming patterns, multi-core machines

Abstractions, Mechanisms
- Spin Locks, Ticket locks
- Queue locks
- Condition variables

- Semaphores

Concurrency Bugs

LOOKING AHEAD

Midterm on Thursday!

Thursday class:
Summary,

More quizzes!
In-class OH?

