
Distributed Systems, NFS

Shivaram Venkataraman
CS 537, Spring 2020

Welcome back !

3 Names to go!

ADMINISTRIVIA

Project 5: Due today!
AEFIS feedback
Optional project

Discussion today: Optional project (short?)

- 10pm → Slip days last project
~ 304 .

→ Project Extra credit

~ 't days Next wed
at 10pm

a
No hit days

- → Individual work
-

April 29

↳ 30 mins or N

final Exam → Cumulative

AGENDA / LEARNING OUTCOMES

What are some basic building blocks for systems that span across machines?

How to design a distributed file system that can survive partial failures?
-

RECAP

DISTRIBUTED SYSTEMS: Challenges

System failure: need to worry about partial failure

Communication failure: links unreliable
- bit errors

- packet loss
- node/link failure

www.google.com

- PFE'RE,

=

④.
I

Raw Messages: UDP

UDP : User Datagram Protocol
API:
- reads and writes over socket file descriptors
- messages sent from/to ports to target a process on machine

Provide minimal reliability features:
- messages may be lost
- messages may be reordered
- messages may be duplicated
- only protection: checksums to ensure data not corrupted

-

-- ⇐

=

TCP: ACKS, TIMEOUTS

Sender
[send message]

[timeout]
[send message]

[recv ack]

Receiver

[recv message]
[send ack]

[ignore message]
[send ack]

peliddew.gr ←
-

delivery

×
'

wer

) O

wrath:&
①

exactly

TCP: SEQUENCE NUMBERS

Sequence numbers
- senders gives each message an increasing unique seq number
- receiver knows it has seen all messages before N

Suppose message K is received.

- if K <= N, Msg K is already delivered, ignore it
- if K = N + 1, first time seeing this message
- if K > N + 1 ?

Me;. . . . ren?
Mimisorts :

.

← :

-
M3

'

Mu

:
:

:
i

. Ms

-
O

buffer this message

RPC

Remote Procedure Call

What could be easier than calling a function?

Approach: create wrappers so calling a function on another machine feels just
like calling a local function!

--

÷:
↳

[
simplifies affliction development

RPC
int main(…) {

int x = foo(”hello”);
}

int foo(char *msg) {
send msg to B
recv msg from B

}

Machine A
int foo(char *msg) {

…
}

void foo_listener() {
while(1) {

recv, call foo
}

}

Machine B

client
wrapper

server
wrapper

client served HMI
> hey

II.offerg@4posejfE-Eag.s.am,

t.EE#:;.E. -
-

←

RPC Tools

RPC packages help with two components
(1) Runtime library

– Thread pool

– Socket listeners call functions on server

(2) Stub generation

– Create wrappers automatically
– Many tools available (rpcgen, thrift, protobufs)

int fool string a

g
th¥mrEEn values .

when
sending RPG

,_
more

parallelism
+ " return ti

(] :
" ;÷Fw.. ..

too -

-
- ⇒÷÷t÷÷

foo-eerver.frcompile
↳ foo - client

. h

too - client . java

Wrapper Generation

Wrappers must do conversions:
- client arguments to message
- message to server arguments
- convert server return value to message
- convert message to client return value

Need uniform endianness (wrappers do this)
Conversion is called marshaling/unmarshaling, or serializing/deserializing

JSON →

fool
"

* hello
"J

- - y
' ' hello

"

"

.
- -

. .

" faring
bytes

I'm
e fait,-- - -

Serialize (objet of type e) haomonly used

↳ bytes term in San-

Wrapper Generation: Pointers

Why are pointers problematic?

Address passed from client not valid on server

Solutions? Smart RPC package: follow pointers and copy data

0×005234

is on
= ,.mn.

ii. * was,
- intth.mn, made!
- - L)

Ptr
. "¥

no
! doe ↳

end up copjg
alot mend:L.

"

nave

very
often of data

RPC libraries expect you
to pass YI?

Sender
[call]
[tcp send]

[recv]
[ack]

Receiver

[recv]
[ack]
[exec call]
…

[return]
[tcp send]

RPC over TCP?

Why wasteful?

diet server

ace at ①
- running funksnot very

weft

O -

TCP rack

RPC over UDP

Strategy: use function return as implicit ACK

Piggybacking technique

What if function takes a long time?
then send a separate ACK

Sender
[call]
[udp send]

[recv]

Receiver

[recv]
[exec call]
…

[return]
[tcp send]

A

stack"t
::: ..

QUIZ 30 https://tinyurl.com/cs537-sp20-quiz30

Who can initiate a Remote Procedure Call?

Which are the functions of client wrapper generator?

Which are the functions of server wrapper generator?

a. man
.

↳ si:÷÷÷:¥÷:*. .
Describe function arguments
Execute Hn function call

serialize return value

Distributed File Systems

Local FS: processes on same machine access shared files

Network FS: processes on different machines access shared files in same way=

izE :*.

Goals for distributed file systems

Transparent access
- can’t tell accesses are over the network
- normal UNIX semantics

Fast + simple crash recovery: both clients and file server may crash

Reasonable performance?

→&
← open ,

read
,

write
,
stat etc .

-

- €
--

NETWORK FILE SYSTEM: NFS

NFS: more of a protocol than a particular file system

Many companies have implemented NFS: Oracle/Sun, NetApp, EMC, IBM

We’re looking at NFSv2. NFSv4 has many changes

Why look at an older protocol? Simpler, focused goals

←
Sun microsystems

#

no--

()

Overview

Architecture

Network API

Write Buffering

Cache

→

→

NFS Architecture

File
Server

Client

Client

Client

Client

RPC

RPC

RPC

RPC
Local FS

✓
lots of q:p

. effort
D) etc

.

your laptop
NFS

- D
my phonemy laptop \

ppg)
protocol

/dev/sda1 on /
/dev/sdb1 on /backups

NFS on /home

/

backups home

bak1 bak2 bak3

etc bin

tyler

537

p1 p2

.bashrc

My laptop Eiseman
- SSD

exec,
its

Hadji

÷÷i÷"
.

=.

Local FSLocal FS

Client Server
- opener .me/oe.,...?/

""
"""
"

"
""÷"

m

:÷ :÷i:÷:*.
FFS

protocol

Overview

Architecture

Network API

Write Buffering

Cache

Strategy 1

Attempt: Wrap regular UNIX system calls using RPC

open() on client calls open() on server
open() on server returns fd back to client

read(fd) on client calls read(fd) on server
read(fd) on server returns data back to client

-

File Descriptors

Local FSLocal FS

Client Server

NFS

client fds

Examples
open
read

p
in um* a :%e%÷ 's

y719
¥
..

Strategy 1: WHAT ABOUT CRASHES

int fd = open(“foo”, O_RDONLY);
read(fd, buf, MAX);
read(fd, buf, MAX);
…
read(fd, buf, MAX);

Server crash!

4 flfoo

-

=
÷¥Ads
(memory)

0nA
reboot④

read (4. kg)
→ client tds

Potential Solutions

1. Run some crash recovery protocol upon reboot
– Complex

2. Persist fds on server disk.
– Slow

– What if client crashes? When can fds be garbage collected?

Strategy 2: put all info in requests

Use “stateless” protocol!
– server maintains no state about clients
– server still keeps other state, of course

*

- server doesn't have to

remember which FD

t is open by which
client

local FS

Strategy 2: put all info in requests

“Stateless” protocol: server maintains no state about clients

Need API change. One possibility:

pread(char *path, buf, size, offset);
pwrite(char *path, buf, size, offset);

Specify path and offset each time. Server need not remember anything from clients.

Pros?
Cons?

tread @home ltykrl.bashrc.by , 100,0)
- → Guy.io, ↳ X

MT retry tread () -

- -

server can crash and reboot transparently
Too many path traversals

Strategy 3: file handles

fh = open(char *path);
pread(fh, buf, size, offset);
pwrite(fh, buf, size, offset);

File Handle = <volume ID, inode #, generation #>

Opaque to client (client should not interpret internals)

El →
still part of

the API

I ② f.
used to

trekreusineode-J-a-g.ggon server side

q-qfs.info#Afeidtratrmdftsewer side cnn.name#aYwxisfie
is in

NEXT STEPS

Next class: More NFS
P5 is due TODAY!
AEFIS feedback

Optional project discussion

me ,r
.
-disparities mount

pre;D
"t

File handle IF £①
← fine:O:#He mfs

Ssh → secure shell moat
commands on remote files

.

.

at÷s : ÷.

