
PERSISTENCE: FAST FILE SYSTEM

Shivaram Venkataraman
CS 537, Spring 2020

ADMINISTRIVIA

P5 release tonight, due April 23rd, 10pm

Attend the discussion section for more details!

2 weeks from now

-
-

optional project after PS ?

AGENDA / LEARNING OUTCOMES

How does file system represent files, directories?

What steps must reads/writes take?

How does FFS improve performance?

- -

-- very Simple file System

-

RECAP

File API WITH FILE DESCRIPTORS

int fd = open(char *path, int flag, mode_t mode)
read(int fd, void *buf, size_t nbyte)
write(int fd, void *buf, size_t nbyte)
close(int fd)

advantages:
- string names
- hierarchical
- traverse once
- offsets precisely defined

--

Persistence

- ↳ Devices
- I
- Hard disks

↳ RAID

(root / test . txt
fi¥Ito
access

data on
disks

FILE API Summary

Using multiple types of name provides convenience and efficiency

Hard and soft link features provide flexibility.

Special calls (fsync, rename) let developers communicate requirements to file system

- -

--

flushing ↳ atomically moving
data to a file from
disk

one path to

another

FILE SYSTEM LAYOUT

S IB DB I I I I I
0 7

D D D D D D D D
8 15

D D D D D D D D
16 23

D D D D D D D D
24 31

D D D D D D D D
32 39

D D D D D D D D
40 47

D D D D D D D D
48 55

D D D D D D D D
56 63

birds
super Metadata
ht I Inde blocks Data blocks

FS

eg.d.ae. C)

Inode

type (file or dir?)
uid (owner)
rwx (permissions)
size (in bytes)
Blocks
time (access)
ctime (create)
links_count (# paths)
addrs[N] (N data blocks)

struct
→
-

→
- we can access this file

→

"

o- an;÷÷±÷÷t÷.

inode

indirectdata data data

Better for small files!
How to handle even larger files?

small ft Dg!.Yµid
f direct

detail

DDD

Simple Directory List Example

valid name inode
1
1
1

.
..

foo

134
35
80

1 bar 23

unlink(“foo”)

" struct
"

g

wearies 8 name

stored inode -mm

valid
data

blocks
}

FS Operations

- open
- read
- close
- create file
- write

FILE API

data inode root foo bar root foo
bitmap bitmap inode inode inode data data

open /foo/bar

data
bar

(1) read
(2) read

(3)read
(4)read

(5)read

TIME # (already exists)

↳
o
O

' """ ÷ :3:i÷÷E
read this file?

data inode root foo bar root foo
bitmap bitmap inode inode inode data data

read /foo/bar – assume opened

data
bar

(1) read
(2) read

(3)write

TIME
O

O .

.

O
O

① read bar in .de what addrs IN] contains

taking into the account offset

② read date block address

⑦ last accessed time for a file ,
updated after
reading data

data inode root foo bar root foo
bitmap bitmap inode inode inode data data

close /foo/bar

data
bar

nothing to do on disk!
Open traverse

the path
read inode → data

close no operations

data inode root foo bar root foo
bitmap bitmap inode inode inode data data

create /foo/bar

1. read
2. read

3. read
4. read

5.read
6.write

8.read
9.write

7.write

10.write

TIME J new file
0

refile
-

mm :S :O:c! -

-

- ¥¥,

① does this already exists
It → Fist

÷:÷:÷⇐?÷¥¥÷÷
time

data inode root foo bar root foo
bitmap bitmap inode inode inode data data

write to /foo/bar (assume file exists and has been opened)

bar
data

(1) read
(2)read
(3)write

(4)write
(5)write

TIME

÷:÷a
o

aadr.ee?Eiim-H ite

last modified time

of file

Efficiency

How can we avoid this excessive I/O for basic ops?

Cache for:
- reads
- write buffering

f-sync

Write Buffering

Overwrites, deletes, scheduling

Shared structs (e.g., bitmaps+dirs) often overwritten.

Tradeoffs: how much to buffer, how long to buffer

← @
D8)

..
.. . ..

÷
. ÷:

"

:

QUIZ 26 https://tinyurl.com/cs537-sp20-quiz26
a : address ,

r : ref .
court

-E .

'⇒ *
⇐

-

- Two modes are usedmkdir On
'

) 11 000 000
- - u two bits should

create12)
z inode number be 1

0=4 Bad
name modern

directory
[Cq , of C ;D G .

2 I

name i node number

QUIZ 26 https://tinyurl.com/cs537-sp20-quiz26

→
I

→
date block

1

- -D .

mkdircld) mkdirc
-

[C. it) trio)] = Id

.

Healing:km÷q;t
-
- e F-

✓

① c &
:

-

refer to same inotk
hard link ④ first block has

•③ proper root dir ✓ foofoofoo

FAST FILE SYSTEM
1-

BSD

OpenBSD
NetBSD

ph.d 8" FreeBSD

FFS

FILE LAYOUT IMPORTANCE

Data Blockssuper
block inodes

0 N

bitmaps

slow

Layout is not disk-aware!

seeks

D - D D D

DISK-AWARE FILE SYSTEM

How to make the disk use more efficient?

Where to place meta-data and data on disk?

PLACEMENT Technique: Groups

DS IB

group 10 G

DS IB

2G

DS IB

3Ggroup 2 group 3

…

Key idea: Keep inode close to data

Use groups across disks;
Strategy: allocate inodes and data blocks in same group.

5-m:

PLACEMENT TECHNIQUE: Groups

In FFS, groups were ranges of cylinders
called cylinder group

In ext2, ext3, ext4 groups are ranges of blocks
called block group

cylinder
←

go

too / /
- It

= SSTF * I

#
block 100 Zoo zoo . . .

.
- N

number

REPLICATED SUPER BLOCKS

DS IB

group 10 G

DS IB

2G

DS IB

3Ggroup 2 group 3

…

Is it useful to have multiple super blocks?

O O O
\

same layer#

Problem
Old FS: All super-block copies
are on the top platter.
Correlated failures! What if
top platter damage?

solution: for each group, store super-block at different offset

Ds FETE
③ .

.
.

.
. .

. .

Smart Policy

DS IB

Where should new inodes and data blocks go?

group 10 G

DS IB

2G

DS IB

3Ggroup 2 group 3

…

Policy

PLACEMENT Strategy

Put related pieces of data near each other.
Rules:

1. Put directory entries near directory inodes.
2. Put inodes near directory entries.
3. Put data blocks near inodes.

Problem: File system is one big tree
All directories and files have a common root.
All data in same FS is related in some way

Trying to put everything near everything else doesn’t make any choices!

I
- -

for files

Revised Strategy

Put more-related pieces of data near each other
Put less-related pieces of data far

/a/b
/a/c
/a/d
/b/f

compiling code

srefa.cn
is:L

air:y÷:÷¥÷÷÷÷÷. . .

create (late) I

mkdir b)

POLICY SUMMARY

File inodes: allocate in same group with dir

Dir inodes: allocate in new group with fewer used inodes than average group

First data block: allocate near inode

Other data blocks: allocate near previous block

↳ parent
y
load behaving

Problem: Large Files

Single large file can fill nearly all of a group
Displaces data for many small files

Most files are small!
Better to do one seek for large file than

one seek for each of many small files

Most files are
small
Most of the space is used by dgqnege) create Ib then we might

create 1C not have space
in this group

bbbbb ee
\

-

cc

]
Amortization

SPLITTING LARGE FILES

Define “large” as requiring an indirect block

Starting at indirect (e.g., after 48 KB) put blocks in a new block group.

Each chunk corresponds to one indirect block
Block size 4KB, 4 byte per address => 1024 address per indirect
1024*4KB = 4MB contiguous “chunk”

I seek ¥7
↳ regfig.gg I'D 'D TIE

SEES,
I 4MB
✓ 4?B

:

12 direct

4 KB -

4kB block

#

adds 4 bytes

POLICY SUMMARY

File inodes: allocate in same group with dir
Dir inodes: allocate in new group with fewer used inodes than average group

First data block: allocate near inode
Other data blocks: allocate near previous block

Large file data blocks: after 48KB, go to new group.
Move to another group (w/ fewer than avg blocks) every subsequent 1MB.

inode

:i
.

←
↳

OTHER FFS FEATURES

FFS also introduced several new features:
– large blocks (with libc buffering / fragments)
– long file names
– atomic rename
– symbolic links

standardize
virtual filesystem API
-

- ¥1

] usability yf¥T

FFS SUMMARY

First disk-aware file system
– Bitmaps
– Locality groups
– Rotated superblocks
– Smart allocation policy

Inspired modern files systems, including ext2 and ext3

EE

#

NEXT STEPS
P5 will be released later today
Details in the discussion section

Next class: Filesystem consistency

i :* :

