wa
J ko

PERSISTENCE: FILE AP

Shivaram Venkataraman
CS 537, Spring 2020

ADMINISTRIVIA

R ret s
Midterm grades are up! — 2e7'”~0(u m fiaze éZ a(?

Pfrf"" m bl Fonks

L__ eY
Discussion today: ? ‘Z\}U/ aat'
Some debugging hints (valgrind), P4b preview PIATZA

Project 4a: due tomorrow at 10pm

R
PLtﬂ. - Aﬁ'&x 'S f)\ P«Kr(of\
Al At —

phy, - <0 deg

|
P TE P Pafpe “LJ

AGENDA / LEARNING OUTCOMES

How do we achieve resilience against disk errors!? RAID

A)M/((MKW

i isk? les \
How to name and organize data on a disk! Fr b Metho ¥
2

A
What is the API programs use to communicate with OS? b ‘8
— oy

RECAP

RAID

Build logical disk Application Logical disk gives

from many 0,10 capacity,
physical disks. U :
N\M?vb(}) —> Logical Disk performance,

YT X

RAID: Redundant Array of Inexpensive Disks

METRICS — Gy R4

Ackemh

Capacity: how much space can apps use!?

Reliability: how many disks can we safely lose? (assume fail stop)

Performance: how long does each workload take? (latency, throughput)

Normalize each to characteristics of one disk /> v

Different RAID levels make different trade-offs

RAID LEVEL COMPARISONS

e : Write , Rand

Rdli\blllt)’ Capacity Read latency Latency Seq Read | Seq Write [Rand Read Write

ra-0 | (0) [en) D D N*S | N*S | N*R | N*R
RAID-I‘ (I) (C*N/2) D D N/2*S | N/2*S N*R | N2*R

Mh‘r'ro‘\:j’j "‘3 M{LF\Q\
o &

o Ul
D D D2

RAID-4 STRATEGY

\Use parity diskl ‘fl

| 9 (ﬁg

(X0

v
N0

Do
— —
. . wh
If an equation has N variables, and N-I are known, unkro i ek
R
you can solve for the unknown. {;1
W’J %ﬂ\'\w
. . . nl, D

Treat sectors across disks in a stripe as an equation. o,

Data on bad disk is like an unknown in the equation. P2

RAID 4: EXAMPLE
Sum Pav i M“"

Disk0 Diskl Disk2 Keisk;’ Disk4

Stripe: | 3 0 | .% A |

parity oy =2
Dk d : Poribi - DO - -yy = b- 3 0 -\

What functions can we use to compute parity? xo R (f’a~:‘71>

0
(8 © O
o ‘

() o

RAID-4: ANALYSIS

What is capacity? Q\l’ 0 «C Fort "’T
How many disks can fail? 7. _ %%
A P
Latency (read, write)? al b’]) / Zﬂrc,/(1Ak } %1
)) 2.0 (Rf;i&f wfab;t / E xﬁ —
— ,\ }(o w0 Disk0 Diskl Disk2 Disk3 Dm
= ke ‘M' J ?m{ﬁ o I 1 0 [0
:w""“ L’“d‘ > pucalled | | 0 | |

N := number of disks

C := capacity of | disk

S := sequential throughput of | disk

R := random throughput of | disk

D := latency of one small /O operation

RAID-4: THROUGHPUT

What is steady-state throuihput for

A
- sequential reads? N-1 *5 ‘ M'“'lfﬁ " %MJ Juv i
- sequential writes!? () ¥5 gubire "f”"“ &

- random reads? QI/’)+
- random writes? (next page!) o aurlom fmmL

L)

FiskO Diskl Disk2 Disk3 | Disk4.

o o 1 1| of
—

(p;rity)

Wik

pp RAID-4: ADDITIVE VS SUBTRACTlVE
& ﬂ (] O Cl ﬁ

gulerccl o 0 | XOR(OOI |
° A mu
b i all el et 10 le ik
Lontt A P oo}
Additive Parity Subtractive Parity u?{iT(,

! .
>l (o, 01,2, 03 U d €3, D

&
CBW < 0 @C.%NID Cinew
9 (CQ’)C\@C?‘ Prew = @ @Pold
(7] —

RAID-5

Disk0 Disk| Disk2 Disk3 Disk4

T

-]

R
f

1

Rotate parity across different disks

¥

How many disks can fail? 1

Latency (read, write)? P 1 2D

N := number of disks

C := capacity of | disk

S := sequential throughput of | disk

R := random throughput of | disk

D := latency of one small /O operation

RAID-3: ANALYSIS

What is capacity? QN ~ \.> +C

Disk0 D‘iskl Disk2 Disk3 | Disk4

[- - —~ - \Pr
IR
e

RAID-5: THROUGHPUT

What is steady-state throughput for RAID-5?
- sequential reads? (N | S

- sequential writes?%lV g |) 59

- random reads? N + R

- random writes? (next page!)

l .
WA LNJ f’”“’y(”’”‘ -
RAID-G

RAID-5 RANDOM WRITES

Disk 0 Disk1

Disk2 Disk3 Disk4

Lot

To w’f”u’ig 0 1

. U 0 @
onfe £ 15 P3
/"“”k ' pg 16
To wplote |
sd N od P2

2 3

RAID LEVEL COMPARISONS

Reliability Capacity Read latency L\:t/:r:::y Seq Read | Seq Write [Rand Read \f:/arr;je
RAID-0 @ C*N D D N *S N *S N * R N * R
RAID-| | (o) D D | N2%S | N2*s | N*R | N2*R
RAID-4 | (N-1) * C D D | (N-1)*S | (N-1)*S | (N-1)*R
RAID-5 | (N-1) * C D D | (N-1)*S | (N-)*S | N*R | N4*R

SUMMARY

RAID: a faster, larger, more reliable disk system

One logical disk built from many physical disk

—

Different mapping and redundancy schemes present different trade-offs

DISKS = FILES

WHAT IS A FILE?

(rle

Array of Ppersistent bytes that can be read/written j"b(’ﬁ \n w0l
""wm O)[',F ’B

File system consists of many files -

Befers to collection of fi@ , Mf_

Also refers to part of OS that manages those files Rc ADm¢
.._/—\/_’_/
ot d 6{4 NTES efc.

Files need-to access correct one /E‘&S ~J*{(U"‘

Three types of names

— Unique id: inode numbers
— Path

— File descriptor

ol Ol«‘b le

inode number

\'w v V— Yo

Li:odes

location 32
size==12

location

size

location
size

location
size=6

Meta-data

file

Data

FILE API CATTEMPT 1)

read(int inode, void *buf, size t nbyte) I>K(
write(int inode, void *buf, size_t nbyte)
seek(int inode, off_t offset)

Disadvantages?

- names hard to remember
- no organization or meaning to inode numbers
- semantics of offset across multiple processes?

PATHS
" \ <
L\QUO 1C S o
String names are friendlier than number names

File system still interacts with inode numbers

Store path-to-inode mappings in a special file or rather a Directory!
- ‘(V\o L

inode number

inodes
location
size=12 R
size

location “readme.txt’: 3, “hello”: 0, ...
size

PATHS

Directory Tree instead of single root directory 7 i recf°"J
File name needs to be unique within a directory
lusr/lib/file.so
. A
[tmp/file.so

foo

Store file-to-inode mapping in each directory

A‘ﬁ /‘\ G}' ’ bar.txt bar foo
w\.(Lo.(s 3} &lﬂ h’ﬂh* ,T -
for 1

bar.txt
..

—J

I

size=12
location

inodes
location
0
I

SIZE

7~ O\
? 2 location readme.txt”’: 3,“hello”: 0, ...
size |

location
3 R

size=6

de number

INO

Reads for getting final inode called “traversal”

Example: read /hello

FILE API (ATTEMPT 2)

read(char *path, void *buf, off_t offset, size_t nbyte)
write(char *path, void *buf, off t offset, size t nbyte)

/MY !,L/Q\ tx ke

Disadvantages!?)P oratiod

Expensive traversal!
Goal: traverse once

\]:ILE DESCRIPTOR|CFD)

Idea:

Do expensive traversal once {(open file))
Store inode in descriptor object (kept in memory).
tore Inode

) re

RCJM ’h(
Each process: ,F‘{,k 4 J’m&_ ,(Q,pl &

File-descriptor table contains pointers to open file descriptors '%(Wﬁ"{’

ey
A

b
stdin: 0, stdout: |, stderr: 2 'rllzﬂifu

\/N/_/V—N/‘/

Do reads/writes via descriptor, which tracks offset
~

Integers used for file I/O are indexes into this table

FILE API (ATTEMPT 3)

int fd = open(EEEE\ngIh, int flag, mode_t mode)
read(ig;vﬁq, void *buf, size t nbyte)

write(int fd, void *buf, size_t nbyte)

close(int fd)

advantages: /

- string names

- hierarchical

on O?”
-\traverse once
- offsets precisely defined

1o v FD TABLE (XV6)
/7 C‘{&U)U’WKD

struct file {

(il 05 o

struct {
struct spinlock lock;
struct file file[NFILE];
— ~——_-

uint off;
5 . ftable;
}s > J/"“" /in '{w} 'K"A J —

struct inode *ip;
W

// Per-process state
struct proc {

struct file *ofile[NOFILE]; // Open files
N~ — e~

} co L-

&ﬁpkt7b

it 70 DUP

fd table

S’I‘J‘!invr o fds
i =
’ 3 -/ mmgl location = ...

4 ——
: .

“file.txt” points here \p%

int fd1 = open(“file.txt”); // returns 3 /’) @
Pead(-@l—: QLJ_-F: \:Lz,): %a]l (,/P(l?’; }’WY- ,AT‘>

int fd2 = open(“file.txt”); // returns

4
int fd3 = dup(fd2); // returns 5 M(/‘AE)) &
— s

READ NOT SEQUENTIALLY

off_t lseek(int filedesc, off_t offset, int whence)
N e
If whence is SEEK SET, the offset is set to gffgg;\Qngs.
If whence is SEEK CUR, the offset is set to its current

—————————————

location plus offset bytes.
If whence is SEEK _END, the offset is set to the size of

the file plus offset bytes. 4b4f
Seeic sel e i
Yw};va (et

struct file { CEEL CuiL
| . - . Ao
struct inode *ip; ,ijwc ‘
uint off; Seck_erd od 4 Fle

s

OU |Z 24 https://tinyurl.com/cs537-sp20-quiz24

| int fdl = open(“file.txt”); // returns 12
Lint fd2 = open(“file.txt”); // returns 13
3 read(fdl, buf, 16);
¢ int £d3 = @up(fd2); // returns 14
$read(fd2, buf, 16);

lseek(fd1, (100,) SEEK_SET);

Offset for fd| OVN"O , ﬂ(QoJ 3 = \L’) ka b

Offset for fd2 ‘D Y@L&5i IS

o P&

Offset for fd3 'r@v‘e : 16

WHAT HAPPENS ON FORK?

aren ID
i ite Open File Table ﬂf fB M,«J QA P &777

’”-;1 AAA’CA
ofI??gz S
inode: ——1—— [inode #1000| - 2.A1D %, RAID

(file.txt)
{
/'\/e' A?J) y
& _ File O(UC'MM ’
| o
-) IC
,,Lorr

COMMUNICATING REQUIREMENTS: FSYNC

File system keeps newly written data in memory for awhile

Write buffering improves performance (why?)
But what if system crashes before buffers are flushed?

fsync(int fd) forces buffers to flush to disk, tells disk to flush its write cache

Makes data durable

DELETING FILES

There is no system call for deleting files!

Inode (and associated file) is garbage collected when there are no references

Paths are deleted when: unlink() is called

FDs are deleted when: close() or process quits

RENAME

rename(char *old, char *new):
- deletes an old link to a file

- creates a new link to a file

Just changes name of file, does not move data

Even when renaming to new directory

What can go wrong if system crashes at wrong time?

ATOMIC FILE UPDATE

Say application wants to update file.txt atomically

If crash, should see only old contents or only new contents

|. write new data to file.txt.tmp file
2. fsync file.txt.tmp

3. rename file.txt.tmp over file.txt, replacing it

SUMMARY

Using multiple types of name provides convenience and efficiency
Special calls (fsync, rename) let developers communicate requirements to file system

Next class: Directory features, Filesystem implementation

Discussion: Debugging parallel code, P4b

