
PERSISTENCE: FILE API

Shivaram Venkataraman
CS 537, Spring 2020



ADMINISTRIVIA

Midterm grades are up!

Project 4a: due tomorrow at 10pm
Discussion today: 

Some debugging hints (valgrind), P4b preview



AGENDA / LEARNING OUTCOMES

How do we achieve resilience against disk errors?

How to name and organize data on a disk?

What is the API programs use to communicate with OS?



RECAP



RAID

FS

ApplicationBuild logical disk 
from many 
physical disks.

Logical Disk

RAID: Redundant Array of Inexpensive Disks

Logical disk gives 

capacity, 

performance, 

reliability



Metrics
Capacity: how much space can apps use?

Reliability: how many disks can we safely lose? (assume fail stop)

Performance: how long does each workload take? (latency, throughput)

Normalize each to characteristics of one disk

Different RAID levels make different trade-offs



RAID Level Comparisons

Reliability Capacity Read latency
Write 

Latency Seq Read Seq Write Rand Read
Rand 
Write

RAID-0 0 C*N D D N * S N * S N * R N * R

RAID-1 1 C*N/2 D D N/2 * S N/2 * S N * R N/2 * R



Raid-4 Strategy

Use parity disk

If an equation has N variables, and N-1 are known, 
you can solve for the unknown.

Treat sectors across disks in a stripe as an equation.

Data on bad disk is like an unknown in the equation.



RAID 4: Example

Stripe:

Disk0 Disk1 Disk2 Disk3 Disk4

3 0 1

What functions can we use to compute parity?

parity

2



RAID-4: Analysis
What is capacity?
How many disks can fail?
Latency (read, write)?

1 0 1 1 1

Disk0 Disk1 Disk2 Disk3 Disk4

N := number of disks
C := capacity of 1 disk
S := sequential throughput of 1 disk
R := random throughput of 1 disk
D := latency of one small I/O operation 

parity

0 1 1 0 0

1 1 0 1 1



RAID-4: Throughput

What is steady-state throughput for
- sequential reads?
- sequential writes?
- random reads?
- random writes? (next page!)

0 0 1 1 0

Disk0 Disk1 Disk2 Disk3 Disk4

(parity)



RAID-4: ADDITIVE vs SUBTRACTIVE

0 0 1 1         XOR(0,0,1,1)

Additive Parity Subtractive Parity

C0         C1          C2          C3                     P0



RAID-5

- - - - P

Disk0 Disk1 Disk2 Disk3 Disk4

- - - P -

- - P - -

…

Rotate parity across different disks



RAID-5: Analysis
What is capacity?

How many disks can fail?

Latency (read, write)?

N := number of disks
C := capacity of 1 disk
S := sequential throughput of 1 disk
R := random throughput of 1 disk
D := latency of one small I/O operation 

- - - - P

Disk0 Disk1 Disk2 Disk3 Disk4

- - - P -

- - P - -

…



RAID-5: Throughput
What is steady-state throughput for RAID-5?
- sequential reads?
- sequential writes?
- random reads?
- random writes? (next page!)

- - - - P

Disk0 Disk1 Disk2 Disk3 Disk4

- - - P -

- - P - -

…



RAID-5 Random WRITES



RAID Level Comparisons

Reliability Capacity Read latency
Write 

Latency Seq Read Seq Write Rand Read
Rand 
Write

RAID-0 0 C*N D D N * S N * S N * R N * R

RAID-1 1 C*N/2 D D N/2 * S N/2 * S N * R N/2 * R

RAID-4 1 (N-1) * C D 2D (N-1)*S (N-1)*S (N-1)*R R/2

RAID-5 1 (N-1) * C D 2D (N-1)*S (N-1)*S N * R N/4 * R



Summary

RAID: a faster, larger, more reliable disk system 

One logical disk built from many physical disk 

Different mapping and redundancy schemes present different trade-offs 



DISKS à FILES



What is a File?

Array of persistent bytes that can be read/written

File system consists of many files

Refers to collection of files
Also refers to part of OS that manages those files

Files need names to access correct one

Three types of names

– Unique id: inode numbers
– Path
– File descriptor



location
size=12

inodes

0
location

size1
location

size2
location
size=63
…

file

file

in
od

e 
nu

m
be

r

Data

Meta-data



File API (attempt 1)

read(int inode, void *buf, size_t nbyte)
write(int inode, void *buf, size_t nbyte)
seek(int inode, off_t offset)

Disadvantages?

- names hard to remember
- no organization or meaning to inode numbers
- semantics of offset across multiple processes?



Paths

String names are friendlier than number names
File system still interacts with inode numbers

Store path-to-inode mappings in a special file or rather a Directory!



location
size=12

inodes

0
location

size1
location

size2
location
size=63
…

in
od

e 
nu

m
be

r

“readme.txt”: 3, “hello”: 0, …



Paths

Directory Tree instead of single root directory
File name needs to be unique within a directory

/usr/lib/file.so
/tmp/file.so

Store file-to-inode mapping in each directory



location
size=12

inodes

0
location

size1
location

size2
location
size=63
…

in
od

e 
nu

m
be

r

“readme.txt”: 3, “hello”: 0, …

Example: read /hello

Reads for getting final inode called “traversal”



File API (attempt 2)

read(char *path, void *buf, off_t offset, size_t nbyte)
write(char *path, void *buf, off_t offset, size_t nbyte)

Disadvantages?  

Expensive traversal!  
Goal: traverse once



File Descriptor (fd)

Idea: 
Do expensive traversal once (open file)
Store inode in descriptor object (kept in memory).
Do reads/writes via descriptor, which tracks offset

Each process:
File-descriptor table contains pointers to open file descriptors

Integers used for file I/O are indexes into this table
stdin: 0, stdout: 1, stderr: 2



File API (attempt 3)

int fd = open(char *path, int flag, mode_t mode)
read(int fd, void *buf, size_t nbyte)
write(int fd, void *buf, size_t nbyte)
close(int fd)

advantages:
- string names
- hierarchical
- traverse once
- offsets precisely defined



FD Table (xv6)

struct file {
...
struct inode *ip;
uint off;

};

// Per-process state                                                                                                            
struct proc {
...                                                                                  
struct file *ofile[NOFILE];  // Open files
...

}

struct {
struct spinlock lock;
struct file file[NFILE];

} ftable;



Code Snippet

0
1
2
3
4
5

offset =  
inode = 

fds
fd table

location = …
size = …

inode

“file.txt” points here

int fd1 = open(“file.txt”); // returns 3
read(fd1, buf, 12);
int fd2 = open(“file.txt”); // returns 4
int fd3 = dup(fd2);         // returns 5

DUP



READ NOT SEQUENTIALLY
off_t lseek(int filedesc, off_t offset, int whence)

If whence is SEEK_SET, the offset is set to offset bytes.
If whence is SEEK_CUR, the offset is set to its current

location plus offset bytes.
If whence is SEEK_END, the offset is set to the size of

the file plus offset bytes.

struct file {
...
struct inode *ip;
uint off;

};



QUIZ 24

Offset for fd1

Offset for fd2

Offset for fd3

https://tinyurl.com/cs537-sp20-quiz24



WHAT HAPPENS ON FORK?



Communicating Requirements: fsync

File system keeps newly written data in memory for awhile
Write buffering improves performance (why?)

But what if system crashes before buffers are flushed?

fsync(int fd) forces buffers to flush to disk, tells disk to flush its write cache
Makes data durable



Deleting Files

There is no system call for deleting files!

Inode (and associated file) is garbage collected when there are no references

Paths are deleted when: unlink() is called

FDs are deleted when: close() or process quits



rename

rename(char *old, char *new):
- deletes an old link to a file
- creates a new link to a file

Just changes name of file, does not move data
Even when renaming to new directory

What can go wrong if system crashes at wrong time?



Atomic File Update

Say application wants to update file.txt atomically
If crash, should see only old contents or only new contents

1. write new data to file.txt.tmp file

2. fsync file.txt.tmp
3. rename file.txt.tmp over file.txt, replacing it



Summary

Using multiple types of name provides convenience and efficiency

Special calls (fsync, rename) let developers communicate requirements to file system

Next class: Directory features, Filesystem implementation

Discussion: Debugging parallel code, P4b


