
PERSISTENCE: FILE SYSTEMS

Shivaram Venkataraman
CS 537, Spring 2020

ADMINISTRIVIA

Midterm grade ranges

Project status going forward

AGENDA / LEARNING OUTCOMES

What are the API to create/modify directories?

How does file system represent files, directories?

What steps must reads/writes take?

RECAP

READING DATA FROM DISK

Seek Time

Rotational delay

RAID Level Comparisons

Reliability Capacity Read latency
Write

Latency Seq Read Seq Write Rand Read
Rand
Write

RAID-0 0 C*N D D N * S N * S N * R N * R

RAID-1 1 C*N/2 D D N/2 * S N/2 * S N * R N/2 * R

RAID-4 1 (N-1) * C D 2D (N-1)*S (N-1)*S (N-1)*R R/2

RAID-5 1 (N-1) * C D 2D (N-1)*S (N-1)*S N * R N/4 * R

File API WITH FILE DESCRIPTORS

int fd = open(char *path, int flag, mode_t mode)
read(int fd, void *buf, size_t nbyte)
write(int fd, void *buf, size_t nbyte)
close(int fd)

advantages:
- string names
- hierarchical
- traverse once
- offsets precisely defined

Code Snippet

0
1
2
3
4
5

offset = 12
inode =

fds
fd table

location = …
size = …

inode

“file.txt” points here

int fd1 = open(“file.txt”); // returns 3
read(fd1, buf, 12);
int fd2 = open(“file.txt”); // returns 4
int fd3 = dup(fd2); // returns 5

DUP

offset = 0
inode =

Communicating Requirements: fsync

File system keeps newly written data in memory for awhile
Write buffering improves performance (why?)

But what if system crashes before buffers are flushed?

fsync(int fd) forces buffers to flush to disk, tells disk to flush its write cache
Makes data durable

Deleting Files

There is no system call for deleting files!

Inode (and associated file) is garbage collected when there are no references

Paths are deleted when: unlink() is called

FDs are deleted when: close() or process quits

rename

rename(char *old, char *new):
- deletes an old link to a file
- creates a new link to a file

Just changes name of file, does not move data
(Even when renaming to new directory)

Renames are atomic!
Either file exists in old path or new one

Directory Calls

mkdir: create new directory
readdir: read/parse directory entries

Links

Hard links: Both path names use same inode number
File does not disappear until all hard links removed; cannot link directories

echo “Beginning…” > file1
ln file1 link
cat link
“Beginning…”

ls –li
18 -rw-rw-r-- 2 shivaram shivaram 10 Apr 6 21:32 file1
18 -rw-rw-r-- 2 shivaram shivaram 10 Apr 6 21:32 link

SOFT LINKS

Soft or symbolic links: Point to second path name; can softlink to dirs

ln –s oldfile softlink

Confusing behavior: “file does not exist”!

Confusing behavior: “cd linked_dir; cd ..; in different parent!

PERMISSIONS, ACCESS CONTROL

FILE API Summary

Using multiple types of name provides convenience and efficiency

Hard and soft link features provide flexibility.

Special calls (fsync, rename) let developers communicate requirements to file system

FILESYSTEM DISK STRUCTURES

FS Structs: Empty Disk

D D D D D D D D
0 7

D D D D D D D D
8 15

D D D D D D D D
16 23

D D D D D D D D
24 31

D D D D D D D D
32 39

D D D D D D D D
40 47

D D D D D D D D
48 55

D D D D D D D D
56 63

Assume each block is 4KB

FS Structs: DATA BLOCKS

D D D D D D D D
0 7

D D D D D D D D
8 15

D D D D D D D D
16 23

D D D D D D D D
24 31

D D D D D D D D
32 39

D D D D D D D D
40 47

D D D D D D D D
48 55

D D D D D D D D
56 63

Simple layout àVery Simple File System

INODE POINTERS

D D D I I I I I
0 7

D D D D D D D D
8 15

D D D D D D D D
16 23

D D D D D D D D
24 31

D D D D D D D D
32 39

D D D D D D D D
40 47

D D D D D D D D
48 55

D D D D D D D D
56 63

inode
16

inode
17

inode
18

inode
19

inode
20

inode
21

inode
22

inode
23

inode
24

inode
25

inode
26

inode
27

inode
28

inode
29

inode
30

inode
31

One Inode Block

Each inode is typically 256 bytes (depends on
the FS, maybe 128 bytes)

4KB disk block

16 inodes per inode block.

Inode

type (file or dir?)
uid (owner)
rwx (permissions)
size (in bytes)
Blocks
time (access)
ctime (create)
links_count (# paths)
addrs[N] (N data blocks)

FS Structs: INODE DATA POINTERS

D D D I I I I I
0 7

D D D D D D D D
8 15

D D D D D D D D
16 23

D D D D D D D D
24 31

D D D D D D D D
32 39

D D D D D D D D
40 47

D D D D D D D D
48 55

D D D D D D D D
56 63

Inode

type (file or dir?)
uid (owner)
rwx (permissions)
size (in bytes)
Blocks
time (access)
ctime (create)
links_count (# paths)
addrs[N] (N data blocks)

Assume single level (just pointers to data
blocks)

What is max file size?
Assume 256-byte inodes
(all can be used for pointers)
Assume 4-byte addrs

How to get larger files?

inode

data data data data

inode

indirect indirect indirect indirect

Indirect blocks are stored in regular data blocks

Largest file size with 64 indirect blocks? Any Cons?

inode

indirectdata data data

Better for small files!
How to handle even larger files?

OTHER APPROACHES
Extent-based
Linked lists (File-allocation Tables)
Multi-level Indexed

Questions
– Amount of fragmentation (internal and external)
– Ability to grow file over time?
– Performance of sequential accesses (contiguous layout)?
– Speed to find data blocks for random accesses?
– Wasted space for meta-data overhead (everything that isn’t data)?

Meta-data must be stored persistently too!

QUIZ 25
Assume 256 byte inodes (16 inodes/block), block size = 4KB.
What is the offset for inode with number 0?

What is the offset for inode with number 4?

What is the offset for inode with number 40?

D D D I I I I I
0 7

https://tinyurl.com/cs537-sp20-quiz25

Directories
File systems vary

Common design:
Store directory entries in data blocks
Large directories just use multiple data blocks
Use bit in inode to distinguish directories from files

Various formats could be used
- lists
- b-trees

Simple Directory List Example

valid name inode
1
1
1

.
..
foo

134
35
80

1 bar 23

unlink(“foo”)

Allocation

How do we find free data blocks or free inodes?

Free list

Bitmaps

Tradeoffs in next lecture…

FS Structs: BITMAPS

D IB DB I I I I I
0 7

D D D D D D D D
8 15

D D D D D D D D
16 23

D D D D D D D D
24 31

D D D D D D D D
32 39

D D D D D D D D
40 47

D D D D D D D D
48 55

D D D D D D D D
56 63

Superblock

Need to know basic FS configuration metadata, like:
- block size
- # of inodes

Store this in superblock

FS Structs: SUPERBLOCK

S IB DB I I I I I
0 7

D D D D D D D D
8 15

D D D D D D D D
16 23

D D D D D D D D
24 31

D D D D D D D D
32 39

D D D D D D D D
40 47

D D D D D D D D
48 55

D D D D D D D D
56 63

SUMMARY

Super Block

Data Block
Inode Table

Data BitmapInode Bitmap

directories indirects

NEXT STEPS
P5 will be released later this week
Details in the discussion section

Next class: Filesystem operations, FFS!

