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ADMINISTRIVIA

Project 5: One week to go!

Discussion today: Prep for final exam

← Due next Thursday

5:30pm Canvas Clinic practice

swim to do it Not graded
~ 6:10pm Blackboard



AGENDA / LEARNING OUTCOMES

How to design a filesystem that performs better for small writes?

What are some similarities or differences with FFS?

very
simple FS → FFS

Log Structured FS
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How can file system fix Inconsistencies?

Solution #1:

FSCK = file system checker
Strategy: 

After crash, scan whole disk for contradictions and “fix” if needed

Keep file system off-line until FSCK completes

For example, how to tell if data bitmap block is consistent?
Read every valid inode+indirect block  
If pointer to data block, the corresponding bit should be 1; else bit is 0

-

can be slow eye for large drive
-

- consistent not necessarily correct



ORDERING FOR CONSISTENCY
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Ordered Journal

Append to a file
Data (D) in block 7
Inode (I) in block 4
Bitmap (B) in block 2
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QUIZ 28 https://tinyurl.com/cs537-sp20-quiz28
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LOG STRUCTURED FILE SYSTEM (LFS)



LFS Performance Goal
Motivation:

– Growing gap between sequential and random I/O performance
– RAID-5 especially bad with small random writes

Idea: use disk purely sequentially
Design for writes to use disk sequentially – how?
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WHERE DO INODES GO?
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LFS Strategy

File system buffers writes in main memory until “enough” data
– How much is enough?  
– Enough to get good sequential bandwidth from disk (MB)

Write buffered data sequentially to new segment on disk

Never overwrite old info: old copies left behind
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BUFFERED WRITES
Amortization

↳ If buffer size - lo MB, ⇒ then we get most benefits
of sequential
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WHAT ELSE IS DIFFERENT FROM FFS? 

What data structures has LFS removed?

allocation structs: data + inode bitmaps

How to do reads?

Inodes are no longer at fixed offset

Use imap structure to map:
inode number => inode location on disk
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IMAP EXPLAINED
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READING IN LFS

1. Read the Checkpoint region
2. Read all imap parts, cache in mem
3. To read a file:

1. Lookup inode location in imap
2. Read inode
3. Read the file block

imap range location
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GARBAGE COLLECTION
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What to do with old data?

Old versions of files à garbage

Approach 1: garbage is a feature!
– Keep old versions in case user wants to revert files later
– Versioning file systems
– Example: Dropbox

Approach 2: garbage collection
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Garbage Collection

Need to reclaim space:
1. When no more references (any file system)
2. After newer copy is created (COW file system)

LFS reclaims segments (not individual inodes and data blocks)
- Want future overwites to be to sequential areas
- Tricky, since segments are usually partly valid
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FREEFREE

Garbage Collection

USEDUSEDdisk segments: USEDUSED

60% 10% 95% 35%

jot. garbage p
marketed

⇒
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reads in 4 segments into memory

Extract out the live date in them

write out live date into 2 new segment



FREEUSED

Garbage Collection

USEDUSEDdisk segments: USEDUSED

60% 10% 95% 35% 95%

compact 2 segments to one

When moving data blocks, copy new inode to point to it
When move inode, update imap to point to it 



Garbage Collection

General operation:
Pick M segments, compact into N (where N < M).

Mechanism: 
How does LFS know whether data in segments is valid?

Policy: 
Which segments to compact?
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Garbage Collection Mechanism

Is an inode the latest version?
– Check imap to see if this inode is pointed to
– Fast!

Is a data block the latest version?
– Scan ALL inodes to see if any point to this data
– Very slow!

How to track information more efficiently?
– Segment summary lists inode and data offset corresponding to each data 

block in segment (reverse pointers)

Data * I inode / imap
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SEGMENT SUMMARY

(N, T) = SegmentSummary[A];

inode = Read(imap[N]);

if (inode[T] == A)
// block D is alive

else
// block D is garbage
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Garbage Collection

General operation:
Pick M segments, compact into N (where N < M).

Mechanism: 
Use segment summary, imap to determine liveness

Policy: 
Which segments to compact?

• clean most empty first
• clean coldest (ones undergoing least change)

• more complex heuristics…
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Crash Recovery

What data needs to be recovered after a crash?
– Need imap (lost in volatile memory)

Better approach?
– Occasionally save to checkpoint region the pointers to imap pieces

How often to checkpoint?
– Checkpoint often: random I/O
– Checkpoint rarely: lose more data, recovery takes longer
– Example: checkpoint every 30 secs



CRASH RECOVERY
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Checkpoint Summary

Checkpoint occasionally (e.g., every 30s)

Upon recovery:
- read checkpoint to find most imap pointers and segment tail
- find rest of imap pointers by reading past tail

What if crash during checkpoint?



Checkpoint Strategy

Have two checkpoint regions
Only overwrite one checkpoint at a time
Use checksum/timestamps to identify newest checkpoint

S1S0disk: S3S2



LFS SUMMARY

Journaling: 
Put final location of data wherever file system chooses 
(usually in a place optimized for future reads)

LFS: 
Puts data where it’s fastest to write, assume future reads cached in memory

Other COW file systems: WAFL, ZFS, btrfs
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QUIZ 29 https://tinyurl.com/cs537-sp20-quiz29



If we fill out 100 segments in a newly created LFS, how long does it take to complete a write?

If we read this file (reads do not hit cache), how long does it take to read the entire file?

If we now read this file backwards, one segment at a time (and reads do not hit in cache), how 
long does this backwards read take?



NEXT STEPS

Project 5 is one week away!

Discussion: Final practice quiz
FFS LFS
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