
PERSISTENCE: Log-structured FileSystem

Shivaram Venkataraman
CS 537, Spring 2020

ADMINISTRIVIA

Project 5: One week to go!

Discussion today: Prep for final exam

← Due next Thursday

5:30pm Canvas Clinic practice

swim to do it Not graded
~ 6:10pm Blackboard

AGENDA / LEARNING OUTCOMES

How to design a filesystem that performs better for small writes?

What are some similarities or differences with FFS?

very
simple FS → FFS

Log Structured FS

RECAP

FS StructS

S IB DB I I I I I
0 7

D D D D D D D D
8 15

D D D D D D D D
16 23

D D D D D D D D
24 31

D D D D D D D D
32 39

D D D D D D D D
40 47

D D D D D D D D
48 55

D D D D D D D D
56 63

Files: .":{Ines

①
Free ?

Inodes

g
-

]

How can file system fix Inconsistencies?

Solution #1:

FSCK = file system checker
Strategy:

After crash, scan whole disk for contradictions and “fix” if needed

Keep file system off-line until FSCK completes

For example, how to tell if data bitmap block is consistent?
Read every valid inode+indirect block
If pointer to data block, the corresponding bit should be 1; else bit is 0

-

can be slow eye for large drive
-

- consistent not necessarily correct

ORDERING FOR CONSISTENCY

0 5 6 12111 2 3 4 7 8 9 10

Transaction: write C to block 4; write T to block 6 write order
9,10,11

12
4,6

Journal
commit

pot.
joint sound ft

C T 74,6 C T
"
end

•
• I -

o o
TE

-

f- Barriers

Atomicity Data written twice

is disk

Ordered Journal

Append to a file
Data (D) in block 7
Inode (I) in block 4
Bitmap (B) in block 2

I D

0 5

B

6 12111 2 3 4 7 8 9 10

-
Journal can be

only journal reused for other

µ
metadata transaction
-

Tx

- -

O 4,2- I B
"
end

⇒ A

First data block is written 7

9,10 , 11
- -

-

- 12
-

- -

2,4
¥urnd

QUIZ 28 https://tinyurl.com/cs537-sp20-quiz28

Mata as B I
t tr

HEE

→
Data blocks in - place

Metadata

soggy start ordered journaling
-
-

Txn End

u¥zdata
in place

Txn Start 4 blocks
-

-

Barrier Data journaling
@ Txntnd

In - place updates

Txn Start 4 blocks Tx End checksum in

- I End→ remove
y -plan updates barrier

LOG STRUCTURED FILE SYSTEM (LFS)

LFS Performance Goal
Motivation:

– Growing gap between sequential and random I/O performance
– RAID-5 especially bad with small random writes

Idea: use disk purely sequentially
Design for writes to use disk sequentially – how?

- -

RAID- 4 -

write operation
inde

D seeks
signed
→

WHERE DO INODES GO?
"

#
D

,) . Add date Mocks ieguahally

•

-- 2¥ 'like a log
LFS

•

Adddress Inode is written after a date flocks

LFS Strategy

File system buffers writes in main memory until “enough” data
– How much is enough?
– Enough to get good sequential bandwidth from disk (MB)

Write buffered data sequentially to new segment on disk

Never overwrite old info: old copies left behind

⇒ as
D

BUFFERED WRITES
Amortization

↳ If buffer size - lo MB, ⇒ then we get most benefits
of sequential

-

g

4 blocks to filet L block to file 2

WHAT ELSE IS DIFFERENT FROM FFS?

What data structures has LFS removed?

allocation structs: data + inode bitmaps

How to do reads?

Inodes are no longer at fixed offset

Use imap structure to map:
inode number => inode location on disk

*nTet¥
⇒

- i÷E
away

Ed - inmadoseodeioinodeyttt
imapfnum] : location read data blocks

IMAP EXPLAINED
imap

in:L: : :-. - -J
28

¥y
imap

reached in memory

Very good
write

co :

performance

READING IN LFS

1. Read the Checkpoint region
2. Read all imap parts, cache in mem
3. To read a file:

1. Lookup inode location in imap
2. Read inode
3. Read the file block

imap range location

on?:[to:L het the
in memory

imap

are:
"

o o
-→

Laos)- imap
scan reconstruct the

→ read mode nun
:L

very
slow

→ mode is at add. 33

→ list of block addrs → direct block at 31

→ read 31
-

map

GARBAGE COLLECTION

gold
inode

- -

y
Append Dl to a file new

inode

What to do with old data?

Old versions of files à garbage

Approach 1: garbage is a feature!
– Keep old versions in case user wants to revert files later
– Versioning file systems
– Example: Dropbox

Approach 2: garbage collection

⇐

÷i÷÷.
""

-

-

Garbage Collection

Need to reclaim space:
1. When no more references (any file system)
2. After newer copy is created (COW file system)

LFS reclaims segments (not individual inodes and data blocks)
- Want future overwites to be to sequential areas
- Tricky, since segments are usually partly valid

*

L
.
.
-

v

g: here i

FREEFREE

Garbage Collection

USEDUSEDdisk segments: USEDUSED

60% 10% 95% 35%

jot. garbage p
marketed

⇒
F-→whiteout live

reads in 4 segments into memory

Extract out the live date in them

write out live date into 2 new segment

FREEUSED

Garbage Collection

USEDUSEDdisk segments: USEDUSED

60% 10% 95% 35% 95%

compact 2 segments to one

When moving data blocks, copy new inode to point to it
When move inode, update imap to point to it

Garbage Collection

General operation:
Pick M segments, compact into N (where N < M).

Mechanism:
How does LFS know whether data in segments is valid?

Policy:
Which segments to compact?

I
when

/

Garbage Collection Mechanism

Is an inode the latest version?
– Check imap to see if this inode is pointed to
– Fast!

Is a data block the latest version?
– Scan ALL inodes to see if any point to this data
– Very slow!

How to track information more efficiently?
– Segment summary lists inode and data offset corresponding to each data

block in segment (reverse pointers)

Data * I inode / imap
L easy

valid if
imap points
to it

=

SEGMENT SUMMARY

(N, T) = SegmentSummary[A];

inode = Read(imap[N]);

if (inode[T] == A)
// block D is alive

else
// block D is garbage

→ Append segments to disk
wined:"shock rim. offset

→ Data blocks , TnodeiffagtmwbAo - (k , o)
*

→ segment summary
\ to check data blocks is

valid
to f

Garbage collation : to check if block at addr A
is ✓did ?

-
- -.

4,07 ← SEA.]
inodee Reading, CKD → inode be of K

inodeiaddrfo) =
-
-

Ao

- doss:c
.X#¥¥t¥¥

Garbage Collection

General operation:
Pick M segments, compact into N (where N < M).

Mechanism:
Use segment summary, imap to determine liveness

Policy:
Which segments to compact?

• clean most empty first
• clean coldest (ones undergoing least change)

• more complex heuristics…

boy. gotye
hot segment

y
40! - garbage

/ .

160T
- gaby 251. garbage
tcold

-

-

FK
←

pick most empty /qttostqge
Hot segment or

cold segment

Crash Recovery

What data needs to be recovered after a crash?
– Need imap (lost in volatile memory)

Better approach?
– Occasionally save to checkpoint region the pointers to imap pieces

How often to checkpoint?
– Checkpoint often: random I/O
– Checkpoint rarely: lose more data, recovery takes longer
– Example: checkpoint every 30 secs

CRASH RECOVERY

S1S0disk: S3S2

ptrs to
imap piecesmemory:

checkpoint
after last

checkpoint

tail after last
checkpoint

Checkpoint Summary

Checkpoint occasionally (e.g., every 30s)

Upon recovery:
- read checkpoint to find most imap pointers and segment tail
- find rest of imap pointers by reading past tail

What if crash during checkpoint?

Checkpoint Strategy

Have two checkpoint regions
Only overwrite one checkpoint at a time
Use checksum/timestamps to identify newest checkpoint

S1S0disk: S3S2

LFS SUMMARY

Journaling:
Put final location of data wherever file system chooses
(usually in a place optimized for future reads)

LFS:
Puts data where it’s fastest to write, assume future reads cached in memory

Other COW file systems: WAFL, ZFS, btrfs

I FFS
-

'

-

QUIZ 29 https://tinyurl.com/cs537-sp20-quiz29

If we fill out 100 segments in a newly created LFS, how long does it take to complete a write?

If we read this file (reads do not hit cache), how long does it take to read the entire file?

If we now read this file backwards, one segment at a time (and reads do not hit in cache), how
long does this backwards read take?

NEXT STEPS

Project 5 is one week away!

Discussion: Final practice quiz
FFS LFS

11

÷e
w¥§B7RfS

Flash -filesystems

Fain t.no;÷:;;q*i
.

