PERSISTENGE: LOG-STRUCTURED FILESYSTEM

Shivaram Venkataraman
CS 537, Spring 2020

ADMINISTRIVIA

Project 5: One week to go! «— Jue next T@MM(WJ

Discussion today: Prep for final exam
630)m\ (omvas Qunz- ?YM{;CQ/
NoX ?’Yﬁﬂ(ﬂ-ﬂ(

95 w2 o f'é"’t'*/

~ '6 70}”\,\ BlaC(CLon(

AGENDA / LEARNING OUTCOMES

How to design a filesystem that performs better for small writes!?

What are some similarities or differences with FFS?

\/afﬁ

B
Z/ch X&Y%Ub"“’l

RECAP

L ¥ FSSTRUCTS

S(\w

(/rr%q, j“miw
B I FIfIRIRI
_/Y 7

DIDIDIDIDIDIDYD
16 23
DIDIDIDIDIDRDYD
32 39
DIDIDIDIDIDRDYD
48 55

[olololololololo
8 |5
DIofofofofofofo
24 31
DIofofofofofofo
40 47
mmmmmmmgx
56

HOW CAN FILE SYSTEM FIX INCONSISTENCIES?

Solution #1:
FSCK = file system checker

Strategy:
After crash, scan whole disk for contradictions and “fix” if needed
Keep file system off-line until FSCK completes \
— Com ke /3/('0‘“’ est ’}w M AJN&
itk et sl e
For example, how to tell if data bitmap block is consistent?

Read every valid inode+indirect block
If pointer to data block, the corresponding bit should be I; else bit is 0

. ORDERING FORCONSISTENGY "

A\
il o
| / N
T T
= J o & T ®
o 1 2 3 (® 5 () 7 & 9 10 1l I
~——
foril
Transaction: write C to block 4; write T to block 6 write order
L ,H’ f}/)\co Ba\w\l@“(} 9, I O, I I |
Mo Doi oo b 2

pooIE 46

ORDERED JOURNAL - 1 o b

A 0 ey
o (_MM
OV\L& ﬁwﬂf"‘Ma\ tﬁf@/ﬂértim
G/_\/\’-
Tx
B = 5

12

ot it o b
Append to a file 0[10]
Data (D) in block 7
Inode (1) in block 4 |2
Bitmap (B) in block 2 —_—

2,k

/
Douse Towrnal

OU |Z 28 https://tinyurl.com/cs537-sp20-quiz28

Blocks VAR R =
e,
o(1(2 (3 |4|5]|6]|7 /8;% gi/ 11 {12 {13 |14 | 15

| ‘ y ’

Bitmap Inode Journal Jc
Me/ra,x <
ook blocles ‘ln"?’(‘@ k ~

Write 5,6 - vl Bt Ofw j"w(
Write 8, 9, 10 ity
Barrier “yglj/)
Write 11 (T)m/—
s e ikt

, o~ f/@‘/"b

Write 8, 9, 10,11,12
Barrier —
Write@

Barrier

Write 2,4,5,6

Write 8, 9, 10,11,12, 13
Barrier
Write 2,4,5,6

Blocks

0

112|134 |5]|6

9 10|11 |12 | 13

14

15

|

Bitmap Inode

Gn Shatt & Yorly
Bo\w‘lb‘{
L/NA

|

Journal

)J@7““$7

hecforr
T QJ—?WW

Lo ey

LOG STRUCTURED FILE SYSTEM (LFS)

LFS PERFORMANGE GOAL

Motivation:
— Growing gap between sequential and random /O performance
— RAID-5 especially bad with small random writes _

ZAD-Y —
|dea: use disk purely sequentially e
Design for writes to use disk sequentially — how?) rfe, o /76"(i

s
/ D /(@d@
[l AN

Lot
0§

WHERE DO INODES GO?
D |) | b ks tepeetally

A0

5 P A oy
- LES
Z I\DO(L //5 w/\/lhl@'\ %f/rer a Mq‘ /%"('/9

LFS STRATEGY

File system buffers writes in main memory until “enough” data

— How much is enough? s
b
— Enough to get good sequential bandwidth from disk (MB) ¢0¥j¢ /Q(,oc,L_Jw

Write buffered data sequentially to new Eegment Ron disk ///

Never overwrite old info: old copies left behind f

BUFFERED WRITES

tAw“’KW{;W o Mg, o e 70 pmoth ~ g
j o~ s -
G If ,(’,,/14{1 fize (,,7L peynonks
| |
g:t ?} fﬁ? blk[0]:A5
D D, D, D s | blk[2]:A2 D
[i,0] [i1] 2] i3l | B 3] e [,0]
‘A0 Al A2 A3 Inodelj] A5 InodelK]

4 Hocb » fl

{ Ik b fikZ

WHAT ELSE IS DIFFERENT FROM FFS?

What data structures has LFS removed?

allocation structs: data + inode bitmaps

How to do reads!?

Inodes are no longer at fixed offset

EE——

Use{imap, structure to map:

inode number => inode location on disk l
inoc W

IMAP EXPLAINED

blk[0]:A0 w0 2L
| | 5B
25
AO
— oy
Labe oy o mw?
| % e
| | | ot ’
blk[0]:A0 |map[k]:A1 \/ %D J wﬂ'fc
k] | imap oy 7
(L
J/ oY ~ N
AO A1 /)

(o 25)

oy e Lol
"0 READINGINLFS G

o\\
C)/\Q/Ck’% C{/L) :
R imap blk[0]:AO0 |map[k]:A1
o [K...k+N]: :
(U{f A2 D @ imap
0 A0 Al A2
(304) > 4
S repmatecd 1€
|. Read the Checkpoint region \/@7 /y(n“’

2. Read all imap parts, cacheﬂ mem] 1
) « N

3. Toreadafile: — e o . B
|. Lookup inode location in imaDo—/? l"OAL s ot o Llock af” 3]

2. Read inode —— MQ]L ko oaddvs — OIA‘Y@O(/
-

3. Read the file block vead 3| — al

GARB@GE&CULLEGTIUN

7\
’ 000000000
DO % D1 itk
AO (gart{ge) A4 l/
MpeA Dl fo @ fle o

WHAT T0 DO WITH OLD DATA? -

pchpne
@Z\\D

el

Approach |: garbage is a feature! \Dij\

— Keep old versions in case user wants to revert files later
—— e

Old versions of files = garbage

— Versioning file systems

— Example: Dropbox

Approach 2: garbage collection

?{M%

GARBAGE COLLECTION

eck.

Dﬁﬁ; i
-
Need to reclaim space: (

| .When no more references (any file system) (

2. After newer copy is created (COWY file system) \

LFS reclaims segments (not individual inodes and data blocks)
- Want future overwites to be to sequential areas

- Tricky, since segments are usually partl

N

ﬂ)o‘\r'fé

[ere

GARBAGE COLLECTION d\wl o
&o/W /) ot

60% % 957
disk segments;

5 N\ .

1/_> | — oMite 0"‘*)(L‘C
{Q,f)\olé o 4 Azj,,ﬂajd/ s MEM
7@{4{/{/ cJ/ /{’(AL L\IQ Ma« W
¢ MQ' (/‘}Q 2, o

W'z'"’f@- GWQf /(A%

GARBAGE COLLECTION

60% 10% 95% 35% 95%

\

compact 2 segments to one

When moving data blocks, copy new inode to point to it
When move inode, update imap to point to it

GARBAGE COLLECTION

General operation:
Pick M segments, compact into N (where N < M).

Mechanism: 7 VWL(,(
How does LFS know whether data in segments is valid? \/41*\0‘l %/M

Policy:
Which/segments to compact?

b\"j\,\&vx

GARBAGE COLLECTION MECHANISM S
Daka ﬂ, oot I W#’

Is an inode the latest version!? j/ @)7/
— Check imap to see if this inode is pointed to
— Fast! ‘
. Mf i
Is a data block the latest version?
— Scan ALL inodes to see if any point to this data
— Very slow!
How to track information more efficiently?

— Segment summary lists inode and data offset corresponding to each data
block in segment (reverse pointers) e

}
\AW}

no

Mw /" s = SEGMENT SUMMARY ~ 7 Wff’"mg
- NN . " s

bI[OJAO [maplKJ:Al vl

D | Ik |imap /W
AQ Al s vokdl
foboge Clikon: 5 ek Ak of e A7
(N, T) = segnentsumary[Al; (k%) < $S[A] e o E
- o ¢ °
inode = Read(imap[N]); l/“OJ”' < MW CKD '
if (inode[T] == A) e+ addr [o) =7 o

// block D is alive M
else <5 : — 'Iil |
// block D is garbage — 3 (3,9 C \ \(%T \3\\ D’LDE\/}

A | N "

o

GARBAGE COLLECTION ~ . 7™
[o/" W o'/ f‘/}

General operation [)/
Pick M segments, compact into N (where Xl <M
8 P (J) 7/5/ 6ﬂ L’}
Mechanism: bo 0({\
Use segment summary, |map to determgine liveness

Policy: LN
Which segments to compact?

* clean most empty first

* clean coldest (ones undergoing least change) Zl j

* more complex heuristics... 1

Jort gt

CRASH RECOVERY

What data needs to be recovered after a crash?
— Need imap (lost in volatile memory)
Better approach?

— Occasionally save to checkpoint region the pointers to imap pieces

How often to checkpoint?
— Checkpoint often: random I/O
— Checkpoint rarely: lose more data, recovery takes longer

— Example: checkpoint every 30 secs

CRASH RECOVERY

ptrs to
imap pieces

checkpoint s I n
| | so | st s2] s3

memory:

after last
checkpoint

tail after last
checkpoint

CHECKPOINT SUMMARY

Checkpoint occasionally (e.g., every 30s)
Upon recovery:
- read checkpoint to find most imap pointers and segment tail

- find rest of imap pointers by reading past tail

What if crash during checkpoint?

CHECKPOINT STRATEGY

Have two checkpoint regions
Only overwrite one checkpoint at a time

Use checksum/timestamps to identify newest checkpoint

disk

LFS SUMMARY

Journaling:/ FES
Put final location of data wherever file system chooses

(usually in a place optimized for future reads)

LFS: .
Puts data where it’s fastest to write, assume future reads cached in memory
-—_

Other COWY file systems:WAFL, ZFS, btrfs

QUIZ 23

block 100:
block 101:
block 102:
block 103:

block 104:
bleck 105:
block 106:
block 107:

[("."

[imap:

0)

https://tinyurl.com/cs537-sp20-quiz29

14

(".-"

0),

0->101,1->102]

—~

e

01,1->106]

("fOO"
[size=1,ptr=100, type=d]
[size=0,ptr=—, type=r]

1)]

=104, ptr=105, type=r]

// a data block

// an inode

// an inode

// a piece of the imap

OPaRAD

// a data block

// a data block

// an inode

// a piece of the imap

If we fill out 100 segments in a newly created LFS, how long does it take to complete a write?

If we read this file (reads do not hit cache), how long does it take to read the entire file?

If we now read this file backwards, one segment at a time (and reads do not hit in cache), how
long does this backwards read take!?

Project 5 is one week away!

Discussion: Final practice quiz

NEXT STEPS

