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Shivaram Venkataraman
CS 537, Spring 2020



ADMINISTRIVIA

Project 5: One week to go! «— Jue  next T@MM(WJ

Discussion today: Prep for final exam
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AGENDA / LEARNING OUTCOMES

How to design a filesystem that performs better for small writes!?

What are some similarities or differences with FFS?

\/afﬁ

B
Z/ch X&Y%Ub"“’l



RECAP



L ¥ FSSTRUCTS

S(\w

(/rr%q, j“miw
B I FIfIRIRI
\_/Y 7

DIDIDIDIDIDIDYD
16 23
DIDIDIDIDIDRDYD
32 39
DIDIDIDIDIDRDYD
48 55

[olololololololo
8 |5
DIofofofofofofo
24 31
DIofofofofofofo
40 47
mmmmmmmgx
56



HOW CAN FILE SYSTEM FIX INCONSISTENCIES?

Solution #1:
FSCK = file system checker

Strategy:
After crash, scan whole disk for contradictions and “fix” if needed
Keep file system off-line until FSCK completes \
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For example, how to tell if data bitmap block is consistent?

Read every valid inode+indirect block
If pointer to data block, the corresponding bit should be I; else bit is 0



. ORDERING FORCONSISTENGY "
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Transaction: write C to block 4; write T to block 6 write order
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OU |Z 28 https://tinyurl.com/cs537-sp20-quiz28
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Write 8, 9, 10,11,12
Barrier —
Write@

Barrier

Write 2,4,5,6

Write 8, 9, 10,11,12, 13
Barrier
Write 2,4,5,6
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LOG STRUCTURED FILE SYSTEM (LFS)



LFS PERFORMANGE GOAL

Motivation:
— Growing gap between sequential and random /O performance
— RAID-5 especially bad with small random writes _
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|dea: use disk purely sequentially e
Design for writes to use disk sequentially — how? ) rfe, o /76"( i
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WHERE DO INODES GO?
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LFS STRATEGY

File system buffers writes in main memory until “enough” data

— How much is enough? s
b
— Enough to get good sequential bandwidth from disk (MB) ¢0¥j¢ /Q(,oc,L_Jw

Write buffered data sequentially to new Eegment Ron disk ///

Never overwrite old info: old copies left behind f




BUFFERED WRITES
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WHAT ELSE IS DIFFERENT FROM FFS?

What data structures has LFS removed?

allocation structs: data + inode bitmaps

How to do reads!?

Inodes are no longer at fixed offset
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Use{imap, structure to map:

inode number => inode location on disk l
inoc W




IMAP EXPLAINED
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WHAT T0 DO WITH OLD DATA? -
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Approach |: garbage is a feature! \Dij\

— Keep old versions in case user wants to revert files later
—— e

Old versions of files = garbage

— Versioning file systems

— Example: Dropbox

Approach 2: garbage collection
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GARBAGE COLLECTION

eck.
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Need to reclaim space: (

| .When no more references (any file system) (

2. After newer copy is created (COWY file system) \

LFS reclaims segments (not individual inodes and data blocks)
- Want future overwites to be to sequential areas

- Tricky, since segments are usually partl
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GARBAGE COLLECTION d\wl o
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GARBAGE COLLECTION

60% 10% 95% 35% 95%
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compact 2 segments to one

When moving data blocks, copy new inode to point to it
When move inode, update imap to point to it



GARBAGE COLLECTION

General operation:
Pick M segments, compact into N (where N < M).

Mechanism: 7 VWL(,(
How does LFS know whether data in segments is valid? \/41*\0‘l %/M

Policy:
Which/segments to compact?
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GARBAGE COLLECTION MECHANISM S
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Is an inode the latest version!? j/ @)7/
— Check imap to see if this inode is pointed to
— Fast! ‘
. Mf i
Is a data block the latest version?
— Scan ALL inodes to see if any point to this data
— Very slow!
How to track information more efficiently?

— Segment summary lists inode and data offset corresponding to each data
block in segment (reverse pointers) e
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GARBAGE COLLECTION ~ . 7™
[o/" W o'/ f‘/}

General operation [)/
Pick M segments, compact into N (where Xl <M
8 P ( J ) 7/5/ 6ﬂ L’}
Mechanism: bo 0({\
Use segment summary, |map to determgine liveness

Policy: LN
Which segments to compact?

* clean most empty first

* clean coldest (ones undergoing least change) Zl j

* more complex heuristics... 1
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CRASH RECOVERY

What data needs to be recovered after a crash?
— Need imap (lost in volatile memory)
Better approach?

— Occasionally save to checkpoint region the pointers to imap pieces

How often to checkpoint?
— Checkpoint often: random I/O
— Checkpoint rarely: lose more data, recovery takes longer

— Example: checkpoint every 30 secs



CRASH RECOVERY
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CHECKPOINT SUMMARY

Checkpoint occasionally (e.g., every 30s)
Upon recovery:
- read checkpoint to find most imap pointers and segment tail

- find rest of imap pointers by reading past tail

What if crash during checkpoint?



CHECKPOINT STRATEGY

Have two checkpoint regions
Only overwrite one checkpoint at a time

Use checksum/timestamps to identify newest checkpoint

disk



LFS SUMMARY

Journaling:/ FES
Put final location of data wherever file system chooses

(usually in a place optimized for future reads)

LFS: .
Puts data where it’s fastest to write, assume future reads cached in memory
-—_

Other COWY file systems:WAFL, ZFS, btrfs



QUIZ 23

block 100:
block 101:
block 102:
block 103:

block 104:
bleck 105:
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block 107:
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// a data block

// an inode

// an inode

// a piece of the imap
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// a data block

// a data block

// an inode

// a piece of the imap



If we fill out 100 segments in a newly created LFS, how long does it take to complete a write?

If we read this file (reads do not hit cache), how long does it take to read the entire file?

If we now read this file backwards, one segment at a time (and reads do not hit in cache), how
long does this backwards read take!?



Project 5 is one week away!

Discussion: Final practice quiz

NEXT STEPS



