
PERSISTENCE: DISK SCHEDULING

Shivaram Venkataraman
CS 537, Spring 2023

Hello!

ADMINISTRIVIA

Project 4 grades out. Regrades?

Project 5 – due soon?

Midterm 2 – April 4th, lots of details on Piazza

-> Keven Chen

-> Tuesday

↳ Venne, Time,
Videos Old Exams

Thursday - guestlecture

AGENDA / LEARNING OUTCOMES

How do you calculate sequential and random tput of a disk?

What algorithms are used to schedule I/O requests?

RECAP

Example Write Protocol

while (STATUS == BUSY)
; // spin

Write data to DATA register
Write command to COMMAND register
while (STATUS == BUSY)

; // spin

Status COMMAND DATA

Microcontroller (CPU+RAM)
Extra RAM
Other special-purpose chips

DNA

Polling vs. Interrupt

RPM

Motor connected to spindle spins platters

Rate of rotation: RPM

10000 RPM à single rotation is 6 ms

tracks
surface

y -

-
W

L
rotations per minute

1
23

06
5 4

7
8
9

10
11

15
14

13
12

16

17

18

19

23

22

21

20

Heads on a moving arm can
read from each surface.

read or write

on that

be cor

↑ 0
S &

-**-

-seek to get
to the

right track
arm

rotation
-waitfor

rightsectorisbe
w

Seek, Rotate, Transfer

Seek cost: Function of cylinder distance
Not purely linear cost
Must accelerate, coast, decelerate, settle
Settling alone can take 0.5 - 2 ms

Entire seeks often takes 4 - 10 ms
Average seek = 1/3 of max seek

Depends on rotations per minute (RPM)
7200 RPM is common, 15000 RPM is high end

Average rotation: Half of time for 1 rotation

Pretty fast: depends on RPM and sector density.

100+ MB/s is typical for maximum transfer rate

Total time = seek + rotation + transfer time

how far does
need to

the arm

move I RPM is given by disk manufacturer

-

↑

on average we waitfor half rotation

Ispec
↓
Textbook devivation

data line 4 4KB:Transfer
--- time

-- BW 100 MB/s

QUIZ 21

What is the time for 4KB
random read with Cheetah?

https://tinyurl.com/cs537-sp23-quiz21

-

-Tek +T
rotate

+Transfer
--

-

=1
+2 t 4kB

s
-

125 MB1
x 1000 15,000 rot 603

-=6.032 ms

032ms=
32 Me Irotate I

1 rot 60 S
-

= 6ms 15,000

= 60,000 m
-

15,000

QUIZ 21

What is the time for 4KB
random read with Barracuda?

https://tinyurl.com/cs537-sp23-quiz21

smaller

③
-

-

-

-
-

-Teck +Trotate + Transf

-9ae +4.16ms +

mits
0.038 ms

Trotate -
60 x1000 m3

-

=13. 198 ms 1200

=8.33 ms -1 =4.16ms
2 -> tation

Workload Performance

So…

- seeks are slow
- rotations are slow

- transfers are fast

How does the kind of workload affect performance?

Sequential: access sectors in order
Random: access sectors arbitrarily

Tseek + Trotate + Transfer
-

- L

4-10ms large sequential

I seek +rotate
-

-

->sequentially read

--
slow

data

Disk Spec
Cheetah Barracuda

Capacity 300 GB 1 TB
RPM 15,000 7,200
Avg Seek 4 ms 9 ms
Max Transfer 125 MB/s 105 MB/s
Platters 4 4
Cache 16 MB 32 MB

Sequential read 100MB: what is throughput for each?

Sequential
I good

Randoms worse l

poor

performance

Transfer .

M

e 0.81 = 800ms
-

I/O SCHEDULERS

I/O Schedulers

Given a stream of I/O requests, in what order should they be served?

Much different than CPU scheduling

Position of disk head relative to request position matters more than length of job

-

Example:
read sector 13 -- First

read sector 24 After

read sector 14 -> Second

read sector 15 ->
Third

=

FCFS (First-Come-First-Serve)

Assume seek+rotate = 10 ms for random request

How long (roughly) does the below workload
take?Requests are given in sector numbers

300001, 700001, 300002, 700002, 300003, 700003

300001, 300002, 300003, 700001, 700002, 700003

I 60 ms for
this

↓
as ↳ - > Es

sequence
10Mb 10ms 10m 10 ms 10ms 1Oms

Reordering
L - - - - ~

:20ms can improve
10ms

70ms performance

SSTF (Shortest SEEK Time First)

Strategy always choose request that requires least seek time
(approximate total time with seek time)

Greedy algorithm (just looks for best NEXT decision)

How to implement in OS?

Disadvantages?

-> nextrequestas
theone

with leastseek time

-> How do Iknow
theseek time?

Sortby sector

number

-> starvation:a
disk requestthat

isalways

waiting.

SCAN

SCAN or Elevator Algorithm:
– Sweep back and forth, from one end of disk other, serving requests as pass

that cylinder
– Sorts by cylinder number; ignores rotation delays

C-SCAN (circular scan): Only sweep in one direction

Pros/Cons?

TODO:Create example 5,24,12,74,33
for unfairness

88,6, 54
27

-

-
sector number? ->

Forward pass 0 to100

Track
Avoid fairness across tracks

0 10 20 ... 90
100I scan can lead to

↑ -

---- 74

Trade-off 12, 24, 33,

some
tracks being

read heade
more often

L
6 27 54 88

SPTF (Shortest POSITIONING Time First)

SATF
(Shortest ACCESS

TIME FIRST)

More accurate way of

doing Scheduling

- ->
need to know

lotabout

disk specification
--

-

->
where

is

thearm

rightnow

QUIZ 22 https://tinyurl.com/cs537-sp23-quiz22

Disk accesses: 32, 12, 33, 3, 13, 4
Rotation Time = 2ms (non-adjacent reads)
Seek Time (for adjacent track) = 2ms.

What is the time taken when using (FCFS) scheduling?

-

4m for two tracks

*

head is at30

2 ms I rotation) -

2ms

32:

rotate:4ms

12:2ms
Creek) +2me

-24 ms

33:2ns
(lock) +2ms

rotate =4mx

Seek) +
Ime

rotate =

Gms

3: 4 ms
-4ms

+ 2ms
2 ms

13:
+ 2m -4m

4: 2ms

QUIZ 22 https://tinyurl.com/cs537-sp23-quiz22

Disk accesses: 32, 12, 33, 3, 13, 4
Rotation Time = 2ms (non-adjacent reads)
Seek Time (for adjacent track) = 2ms.

Order in which requests will be serviced for
Shortest Seek Time First (SSTF)?

Time Taken

-
-

↳

-
2,13,3,4

=2ms
32

- :Om
33

2 + 2
=4 ms =10 ms

12:

13 =Omy

=4 uns

3

4
=0 as

Schedulers

OS

Disk

Scheduler

Scheduler

Where should the
scheduler go?

PI read 51 P2

↳ /read s
OS

=fairness across

process,

- multiple policiess &

↓

read Sat, 52,5...3
upgrade I change

-> knows a
lotmore

-> density, time taken

-> where
is
the arm

What happens?

void reader(int fd) {
char buf[1024];
int rv;
while((rv = read(fd, buf)) != 0) {

assert(rv);
// takes short time, e.g., 1ms
process(buf, rv);

}
}

Assume 2 processes each calling read() with C-SCAN

-> How long do you

waitto
reorder

requests?

~ File 1 P2:File 2
P1: Read 300

--

2 sectors Read 301

Read 700
↑2:

- Read 101

--

ims later% -

-

-

P1:Read 302

read ahead Read 303

:
-

Work Conservation

Work conserving schedulers always try to do work if there’s work to be done

Sometimes, it’s better to wait instead if system anticipates another request will arrive

Possible improvements from I/O Merging

-
never waitor keep disk idle

-

↳timeoutthatyour
I wait

Contiguous requests
->

read ahead

they get merged.

SUMMARY

Disks: Specific geometry with platters, spindle, tracks, sector

I/O Time: rotation_time + seek_time + transfer_time
Sequential throughput vs. random throughput

Scheduling approaches: SSTF, SCAN, C-SCAN
Benefits of violating work conservation

NEXT STEPS

Next class: How to achieve resilience against disk errors

