PERSISTENCE: DISK SCHEDULING

Shivaram Venkataraman

CS 537, Spring 2023

ADMINISTRIVIA

Project 4 grades out. Regrades?

Project 5 – due soon?

Midterm 2 – April 4th, lots of details on Piazza

AGENDA / LEARNING OUTCOMES

How do you calculate sequential and random tput of a disk?

What algorithms are used to schedule I/O requests?

RECAP

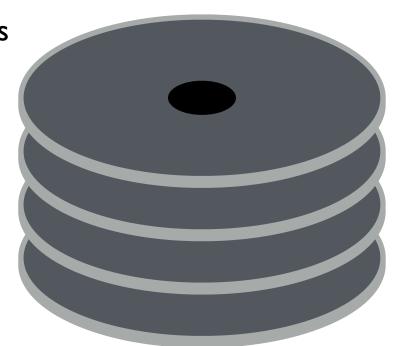
EXAMPLE WRITE PROTOCOL

```
Status COMMAND DATA

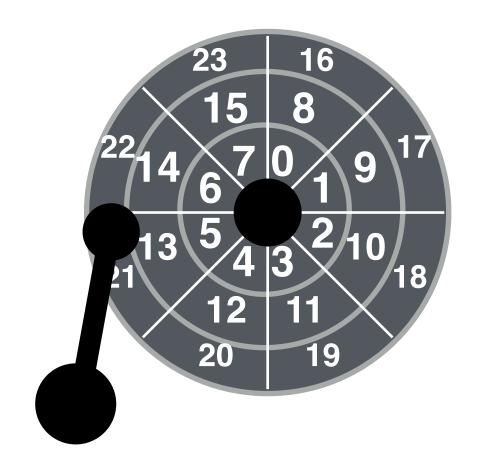
Microcontroller (CPU+RAM)

Extra RAM

Other special-purpose chips
```


```
while (STATUS == BUSY)
  ; // spin
Write data to DATA register
Write command to COMMAND register
while (STATUS == BUSY)
  ; // spin
```

RPM


Motor connected to spindle spins platters

Rate of rotation: RPM

10000 RPM \rightarrow single rotation is 6 ms

Heads on a moving arm can read from each surface.

SEEK, ROTATE, TRANSFER

Seek cost: Function of cylinder distance

Not purely linear cost

Must accelerate, coast, decelerate, settle

Settling alone can take 0.5 - 2 ms

Depends on rotations per minute (RPM) 7200 RPM is common, I 5000 RPM is high end

Average rotation: Half of time for 1 rotation

Entire seeks often takes 4 - 10 ms

Average seek = 1/3 of max seek

Pretty fast: depends on RPM and sector density.

100+ MB/s is typical for maximum transfer rate

Total time = seek + rotation + transfer time

QUIZ 21

https://tinyurl.com/cs537-sp23-quiz21

What is the	time	for 4KB
random read	with	Cheetah?

	Cheetah 15K.5	Barracuda
Capacity	300 GB	1 TB
RPM	15,000	7,200
Average Seek	4 ms	9 ms
Max Transfer	$125 \mathrm{MB/s}$	$105\mathrm{MB/s}$
Platters	4	4
Cache	16 MB	16/32 MB
Connects via	SCSI	SATA

QUIZ 21

https://tinyurl.com/cs537-sp23-quiz21

What is the time for 4KE
random read with Barracuc

	Cheetah 15K.5	Barracuda
Capacity	300 GB	1 TB
RPM	15,000	7,200
Average Seek	4 ms	9 ms
Max Transfer	$125 \mathrm{MB/s}$	$105\mathrm{MB/s}$
Platters	4	4
Cache	16 MB	16/32 MB
Connects via	SCSI	SATA
	RPM Average Seek Max Transfer Platters Cache	Capacity 300 GB RPM 15,000 Average Seek 4 ms Max Transfer 125 MB/s Platters 4 Cache 16 MB

WORKLOAD PERFORMANCE

So...

- seeks are slow
- rotations are slow
- transfers are fast

How does the kind of workload affect performance?

Sequential: access sectors in order

Random: access sectors arbitrarily

DISK SPEC

	Cheetah	Barracuda
Capacity	300 GB	I TB
RPM	15,000	7,200
Avg Seek	4 ms	9 ms
Max Transfer	125 MB/s	105 MB/s
Platters	4	4
Cache	I6 MB	32 MB

Sequential read 100MB: what is throughput for each?

I/O SCHEDULERS

I/O SCHEDULERS

Given a stream of I/O requests, in what order should they be served?

Much different than CPU scheduling

Position of disk head relative to request position matters more than length of job

FCFS (FIRST-COME-FIRST-SERVE)

Assume seek+rotate = 10 ms for random request

How long (roughly) does the below workload take? Requests are given in sector numbers

300001, 700001, 300002, 700002, 300003, 700003

300001, 300002, 300003, 700001, 700002, 700003

SSTF (SHORTEST SEEK TIME FIRST)

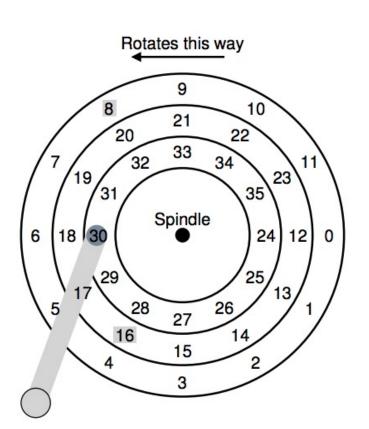
Strategy always choose request that requires least seek time (approximate total time with seek time)

Greedy algorithm (just looks for best NEXT decision)

How to implement in OS?

Disadvantages?

SCAN

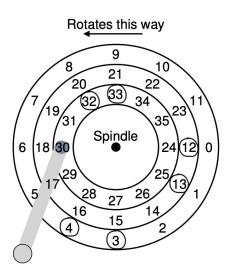

SCAN or Elevator Algorithm:

- Sweep back and forth, from one end of disk other, serving requests as pass that cylinder
- Sorts by cylinder number; ignores rotation delays

C-SCAN (circular scan): Only sweep in one direction

Pros/Cons?

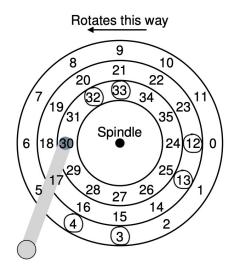
SPTF (SHORTEST POSITIONING TIME FIRST)



SATF (SHORTEST ACCESS TIME FIRST)

QUIZ 22

https://tinyurl.com/cs537-sp23-quiz22

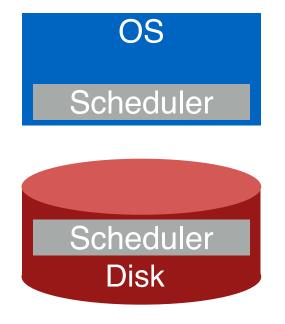


Disk accesses: 32, 12, 33, 3, 13, 4
Rotation Time = 2ms (non-adjacent reads)
Seek Time (for adjacent track) = 2ms.

What is the time taken when using (FCFS) scheduling?

QUIZ 22

https://tinyurl.com/cs537-sp23-quiz22


Disk accesses: 32, 12, 33, 3, 13, 4
Rotation Time = 2ms (non-adjacent reads)
Seek Time (for adjacent track) = 2ms.

Order in which requests will be serviced for Shortest Seek Time First (SSTF)?

Time Taken

SCHEDULERS

Where should the scheduler go?

WHAT HAPPENS?

Assume 2 processes each calling read() with C-SCAN

```
void reader(int fd) {
    char buf[1024];
    int rv;
    while((rv = read(fd, buf)) != 0) {
        assert(rv);
        // takes short time, e.g., 1ms
        process(buf, rv);
    }
}
```

WORK CONSERVATION

Work conserving schedulers always try to do work if there's work to be done

Sometimes, it's better to wait instead if system anticipates another request will arrive

Possible improvements from I/O Merging

SUMMARY

Disks: Specific geometry with platters, spindle, tracks, sector

I/O Time: rotation_time + seek_time + transfer_time
Sequential throughput vs. random throughput

Scheduling approaches: SSTF, SCAN, C-SCAN Benefits of violating work conservation

NEXT STEPS

Next class: How to achieve resilience against disk errors