
Distributed Systems

Shivaram Venkataraman
CS 537, Spring 2023

ADMINISTRIVIA

Project 6 grades
Project 7
Project 8 – Extra credit (4%)

Midterm 3 conflicts

AEFIS feedback

AGENDA / LEARNING OUTCOMES

What are some basic building blocks for systems that span across machines?

RECAP

SSD OPERATIONS
Read a page: Retrieve contents of entire page (e.g., 4 KB)

– Cost: 25—75 microseconds
– Independent of page number, prior request offsets

Erase a block: Resets each page in the block to all 1s
– Cost: 1.5 to 4.5 milliseconds
– Much more expensive than reading!
– Allows each page to be written

Program (i.e., write) a page: Change selected 1s to 0s
– Cost is 200 to1400 microseconds
– Faster than erasing a block, but slower than reading a page

FTL: DIRECT MAPPING

Cons?

Write amplification
No wear-leveling

FTL: LOG-BASED MAPPING
Idea: Treat the physical blocks like a log

GARBAGE COLLECTION
Steps:

Read all pages in
physical block

Write out the alive
entries to the end of
the log

Erase block (freeing it
for later use)

SSD VS HDD PERFORMANCE

SSD VS HDD COST

1TB ~ $150 on average
~15 cents / GB

~1.5 cents / GB

PERSISTENCE SUMMARY

Managing I/O devices is a significant part of OS!
Disk drives: storage media with specific geometry
SSDs: Pages, Blocks

Filesystems: OS provided API to access disk

Simple FS: FS layout with SB, Bitmaps, Inodes, Datablocks
FFS: Split simple FS into groups. Key idea: put inode, data close to each other
LFS: Puts data where it’s fastest to write, hope future reads cached in memory

https://www.eecs.harvard.edu/~margo/papers/usenix95-lfs/supplement/

FSCK, Journaling

DISTRIBUTED SYSTEMS

What is a Distributed System?

A distributed system is one where a machine I’ve never heard of can cause my program to fail.
— Leslie Lamport

Definition: More than one machine working together to solve a problem

Examples:
– client/server: web server and web client

– cluster: page rank computation

http://research.microsoft.com/en-us/um/people/lamport/pubs/distributed-system.txt

WHY GO DISTRIBUTED?

Why Go Distributed?

More computing power

More storage capacity

Fault tolerance

Data sharing

New Challenges

System failure: need to worry about partial failure

Communication failure: links unreliable
- bit errors

- packet loss
- node/link failure

Communication Overview

Raw messages: UDP
Reliable messages: TCP
Remote procedure call: RPC

Raw Messages: UDP

UDP : User Datagram Protocol
API:
- reads and writes over socket file descriptors
- messages sent from/to ports to target a process on machine

Provide minimal reliability features:
- messages may be lost
- messages may be reordered
- messages may be duplicated
- only protection: checksums to ensure data not corrupted

Raw Messages: UDP

Advantages
– Lightweight
– Some applications make better reliability decisions themselves (e.g., video

conferencing programs)

Disadvantages
– More difficult to write applications correctly

NOT A QUIZ?

Course feedback: https://aefis.wisc.edu

Reliable Messages: Layering strategy

TCP: Transmission Control Protocol

Using software to build
reliable logical connections over unreliable physical connections

Technique #1: ACK

Sender
[send message]

[recv ack]

Receiver

[recv message]
[send ack]

Ack: Sender knows message was received
What to do about message loss?

Technique #2: Timeout

Sender
[send message]
[start timer]

… waiting for ack …

[timer goes off]
[send message]

[recv ack]

Receiver

[recv message]
[send ack]

TIMEOUT

How long to wait?

Too long?
– System feels unresponsive

Too short?
– Messages needlessly re-sent
– Messages may have been dropped due to overloaded server. Resending makes

overload worse!

LOST ACK PROBLEM

Sender
[send message]

[timeout]
[send message]

[recv ack]

Receiver

[recv message]
[send ack]

[ignore message]
[send ack]

SEQUENCE NUMBERS

Sequence numbers
- senders gives each message an increasing unique seq number
- receiver knows it has seen all messages before N

Suppose message K is received.

- if K <= N, Msg K is already delivered, ignore it
- if K = N + 1, first time seeing this message
- if K > N + 1 ?

TCP

TCP: Transmission Control Protocol

Most popular protocol based on seq nums
Buffers messages so arrive in order
Timeouts are adaptive

Communications Overview

Raw messages: UDP

Reliable messages: TCP

Remote procedure call: RPC

RPC

Remote Procedure Call

What could be easier than calling a function?

Approach: create wrappers so calling a function on another machine feels just
like calling a local function!

RPC
int main(…) {

int x = foo(”hello”);
}

int foo(char *msg) {
send msg to B
recv msg from B

}

Machine A
int foo(char *msg) {

…
}

void foo_listener() {
while(1) {

recv, call foo
}

}

Machine B

RPC
int main(…) {

int x = foo(”hello”);
}

int foo(char *msg) {
send msg to B
recv msg from B

}

Machine A
int foo(char *msg) {

…
}

void foo_listener() {
while(1) {

recv, call foo
}

}

Machine B

client
wrapper

server
wrapper

RPC Tools

RPC packages help with two components
(1) Runtime library

– Thread pool

– Socket listeners call functions on server

(2) Stub generation

– Create wrappers automatically
– Many tools available (rpcgen, thrift, protobufs)

Wrapper Generation

Wrappers must do conversions:
- client arguments to message
- message to server arguments
- convert server return value to message
- convert message to client return value

Need uniform endianness (wrappers do this)
Conversion is called marshaling/unmarshaling, or serializing/deserializing

Wrapper Generation: Pointers

Why are pointers problematic?

Address passed from client not valid on server

Solutions? Smart RPC package: follow pointers and copy data

Sender
[call]
[tcp send]

[recv]
[ack]

Receiver

[recv]
[ack]
[exec call]
…

[return]
[tcp send]

RPC over TCP?

Why wasteful?

RPC over UDP

Strategy: use function return as implicit ACK

Piggybacking technique

What if function takes a long time?
then send a separate ACK

Sender
[call]
[udp send]

[recv]

Receiver

[recv]
[exec call]
…

[return]
[tcp send]

NEXT STEPS

Distributed Filesystems

