
PERSISTENCE: FAST FILE SYSTEM

Shivaram Venkataraman
CS 537, Spring 2023

ADMINISTRIVIA

Midterm grades

P6 progress?

AGENDA / LEARNING OUTCOMES

How does file system represent files, directories?

What steps must reads/writes take?

How does FFS improve performance?

RECAP

File API WITH FILE DESCRIPTORS

int fd = open(char *path, int flag, mode_t mode)
read(int fd, void *buf, size_t nbyte)
write(int fd, void *buf, size_t nbyte)
close(int fd)

advantages:
- string names
- hierarchical
- traverse once
- offsets precisely defined

FILE SYSTEM LAYOUT

S IB DB I I I I I
0 7

D D D D D D D D
8 15

D D D D D D D D
16 23

D D D D D D D D
24 31

D D D D D D D D
32 39

D D D D D D D D
40 47

D D D D D D D D
48 55

D D D D D D D D
56 63

inode

indirectdata data data

FS Operations

- open
- read
- close
- create file
- write

data inode root foo bar root foo
bitmap bitmap inode inode inode data data

open /foo/bar

data
bar

(1) read
(2) read

(3)read
(4)read

(5)read

TIME

data inode root foo bar root foo
bitmap bitmap inode inode inode data data

read /foo/bar – assume opened

data
bar

(1) read
(2) read

(3)write

TIME

data inode root foo bar root foo
bitmap bitmap inode inode inode data data

close /foo/bar

data
bar

nothing to do on disk!

data inode root foo bar root foo
bitmap bitmap inode inode inode data data

create /foo/bar

1. read
2. read

3. read
4. read

5.read
6.write

8.read
9.write

7.write

10.write

TIME

data inode root foo bar root foo
bitmap bitmap inode inode inode data data

write to /foo/bar (assume file exists and has been opened)

bar
data

(1) read
(2)read
(3)write

(4)write
(5)write

TIME

Efficiency

How can we avoid this excessive I/O for basic ops?

Cache for:
- reads
- write buffering

Write Buffering

Overwrites, deletes, scheduling

Shared structs (e.g., bitmaps+dirs) often overwritten.

Tradeoffs: how much to buffer, how long to buffer

QUIZ 26 https://tinyurl.com/cs537-sp23-quiz26

QUIZ 26 https://tinyurl.com/cs537-sp23-quiz26

FAST FILE SYSTEM

FILE LAYOUT IMPORTANCE

Data Blockssuper
block inodes

0 N

bitmaps

slow

Layout is not disk-aware!

DISK-AWARE FILE SYSTEM

How to make the disk use more efficient?

Where to place meta-data and data on disk?

PLACEMENT Technique: Groups

DS IB

group 10 G

DS IB

2G

DS IB

3Ggroup 2 group 3

…

Key idea: Keep inode close to data

Use groups across disks;
Strategy: allocate inodes and data blocks in same group.

PLACEMENT TECHNIQUE: Groups

In FFS, groups were ranges of cylinders
called cylinder group

In ext2, ext3, ext4 groups are ranges of blocks
called block group

REPLICATED SUPER BLOCKS

DS IB

group 10 G

DS IB

2G

DS IB

3Ggroup 2 group 3

…

Is it useful to have multiple super blocks?

Problem
Old FS: All super-block copies
are on the top platter.
Correlated failures! What if
top platter damage?

solution: for each group, store super-block at different offset

Smart Policy

DS IB

Where should new inodes and data blocks go?

group 10 G

DS IB

2G

DS IB

3Ggroup 2 group 3

…

PLACEMENT Strategy

Put related pieces of data near each other.
Rules:

1. Put directory entries near directory inodes.
2. Put inodes near directory entries.
3. Put data blocks near inodes.

Problem: File system is one big tree
All directories and files have a common root.
All data in same FS is related in some way

Trying to put everything near everything else doesn’t make any choices!

Revised Strategy

Put more-related pieces of data near each other
Put less-related pieces of data far

/a/b
/a/c
/a/d
/b/f

POLICY SUMMARY

File inodes: allocate in same group with dir

Dir inodes: allocate in new group with fewer used inodes than average group

First data block: allocate near inode

Other data blocks: allocate near previous block

Problem: Large Files

Single large file can fill nearly all of a group
Displaces data for many small files

Most files are small!
Better to do one seek for large file than

one seek for each of many small files

SPLITTING LARGE FILES

Define “large” as requiring an indirect block

Starting at indirect (e.g., after 48 KB) put blocks in a new block group.

Each chunk corresponds to one indirect block
Block size 4KB, 4 byte per address => 1024 address per indirect
1024*4KB = 4MB contiguous “chunk”

POLICY SUMMARY

File inodes: allocate in same group with dir
Dir inodes: allocate in new group with fewer used inodes than average group

First data block: allocate near inode
Other data blocks: allocate near previous block

Large file data blocks: after 48KB, go to new group.
Move to another group (w/ fewer than avg blocks) every subsequent 1MB.

OTHER FFS FEATURES

FFS also introduced several new features:
– large blocks (with libc buffering / fragments)
– long file names
– atomic rename
– symbolic links

FFS SUMMARY

First disk-aware file system
– Bitmaps
– Locality groups
– Rotated superblocks
– Smart allocation policy

Inspired modern files systems, including ext2 and ext3

NEXT STEPS
Next class: Filesystem consistency

