
PERSISTENCE: FSCK, JOURNALING

Shivaram Venkataraman
CS 537, Spring 2023

Hello!

Its warm!!

ADMINISTRIVIA

Project 6 updates

Midterm 2: Solutions, grades

No class on Tuesday!

- Tests -> tomorrow!!
↳ Timing

-> 4pm

->

AGENDA / LEARNING OUTCOMES

How to check for consistency with power failures / crashes?

How to ensure consistency in filesystem design?

RECAP

FS Structs: SUPERBLOCK

S IB DB I I I I I
0 7

D D D D D D D D
8 15

D D D D D D D D
16 23

D D D D D D D D
24 31

D D D D D D D D
32 39

D D D D D D D D
40 47

D D D D D D D D
48 55

D D D D D D D D
56 63

Basic FS configuration metadata, like block size, # of inodes
bitmaps

Super
block G 4 inode data blocks

--

data inode root foo bar root foo
bitmap bitmap inode inode inode data data

create /foo/bar

1. read
2. read

3. read
4. read

5.read
6.write

8.read
9.write

7.write

10.write

TIME
I

->

0
allocate

10 different 110 operations

for I
call to create

FFS PLACEMENT Groups

DS IB

group 10 G

DS IB

2G

DS IB

3Ggroup 2 group 3

…

Key idea: Keep inode close to data

Use groups across disks;
Strategy: allocate inodes and data blocks in same group.

How are on

can be cheaper

bitmaps for
the

up ↑ same group

I I
In replicated

POLICY SUMMARY

File inodes: allocate in same group with dir
Dir inodes: allocate in new group with fewer used inodes than average group

First data block: allocate near inode
Other data blocks: allocate near previous block

Large file data blocks: after 48KB, go to new group.
Move to another group (w/ fewer than avg blocks) every subsequent 1MB.

,a?I same group as I

leve - new group
- --

data block
inde

group
1 DDDDDD (7

group 4 DD DDDD

-

OTHER FFS FEATURES

FFS also introduced several new features:
– large blocks (with libc buffering / fragments)
– long file names
– atomic rename
– symbolic links

Inspired modern files systems, including ext2 and ext3

->

->
hard links

↳loft links

ext 4
I

FILE SYSTEM CONSISTENCY

File System CONSISTENCY Example

Superblock: field contains total number of blocks in FS
DATA = N

Inode: field contains pointer to data block; possible DATA?
DATA in {0, 1, 2, …, N - 1}

Pointers to block N or after are invalid!
Total-blocks field has redundancy with inode pointers

D. SB

-102- inode

-itcs-titent
here

must be

< ↑ in super
block

Why is consistency challenging?

File system may perform several disk writes to redundant blocks

If file system is interrupted between writes, may leave data in inconsistent state

What can interrupt write operations?

- power loss
- kernel panic
- reboot

-

FILE APPEND EXAMPLEold state data block
① New

to read this
->No way

- block
L

② Inode needs new

per to garbage!
Targetstate -> Pointer

-
->

⑧- ③ Data
bitmap

mark

⑧ used

⑤ block as

waste as

garbage -space
block isnot

really

How can file system fix Inconsistencies?

Solution #1:

FSCK = file system checker
Strategy:

After crash, scan whole disk for contradictions and “fix” if needed

Keep file system off-line until FSCK completes

For example, how to tell if data bitmap block is consistent?
Read every valid inode+indirect block
If pointer to data block, the corresponding bit should be 1; else bit is 0

I Y

!
-- -

Fsck Checks

Do superblocks match?
Is the list of free blocks correct?
Do number of dir entries equal inode link counts?
Do different inodes ever point to same block?
Are there any bad block pointers?
Do directories contain “.” and “..”?
…

->replicated

FREE BLOCKS EXAMPLE

inode
link_count = 1

block
(number 123)

data bitmap
0011001100

for block 123

A
bitmap

thinks block is free

butinode pointsto block

the bit 123 to be used

Fix:Change
in bitmap!

LINK COUNT EXAMPLE

Dir Entry

Dir Entry

inode
link_count = 1

link_count
tracks how

2 many
dir entries

to

L pointinde
update
link Count

Duplicate Pointers

inode
link_count = 1

block
(number 123)

inode
link_count = 1

data

FS t L copy

Consistent ->s
butmay

not be

correct

BAD POINTER

inode
link_count = 1

super block
tot-blocks=8000

9999X (should notbe (
greater

than 8000

- Delete the pa

- Make it point
to

--
an emptyblock

QUIZ 28 https://tinyurl.com/cs537-sp23-quiz28

-

Inconsistent.

Fix: update Imode Bitmap to be

10000000

-

-

-I -
-

- &

"I

-

/ I, parentis

Inconsistent. L
Create entries

il

-

I 0

' 11

O
-

"fibe!"I
17

"file? 2

Problems with fsck

Problem 1:
– Not always obvious how to fix file system image

– Don’t know “correct” state, just consistent one

– Easy way to get consistency: reformat disk!

Problem 2: fsck is very sloW

Checking a 600GB disk takes ~70 minutes

ffsck: The Fast File System Checker
Ao Ma, Chris Dragga, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau

1TB 12 T

Consistency Solution #2: Journaling

Goals
– Ok to do some recovery work after crash, but not to read entire disk
– Don’t move file system to just any consistent state, get correct state

Atomicity
– Definition of atomicity for concurrency: operations in critical sections are not

interrupted by operations on related critical sections
– Definition of atomicity for persistence: collections of writes are not interrupted

by crashes; either (all new) or (all old) data is visible

Consistency vs ATOMICITY

Say a set of writes moves the disk from state A to B

A B

consistent states

all states

fsck gives consistency
Atomicity gives A or B.

empty

-
appard on file t

& X
I

JOURNAL LAYOUT

Transaction

replay of
reserve blocks journal duringsome
↑

recovery

1. Start to entry

2.Write blocks that

↓ L belong to Tx

Transaction end 3. Itend entry

-ournal
begin Flush the I

JOURNAL write AND ChECKPOINTS

0 5 6 12111 2 3 4 7 8 9 10

transaction: write A to block 5; write B to block 2

Checkpoint: Writing new data to in-place locations

*Start -end
BB * 2,5

B A

-> flush
journal

to

-

To
name for thisstep

disk

JOURNAL REUSE AND ChECKPOINTS

A

0 5

B 5,2 A B TxE

6 12111 2 3 4 7 8 9 10

transaction: write A to block 5; write B to block 2

Checkpoint: Writing new data to in-place locations

transaction: write C to block 4; write T to block 6

Ordering FOR CONSISTENCY

write order
9,10,11

12
4,6

Barriers
1) Before journal commit, ensure journal entries complete
2) Before checkpoint, ensure journal commit complete
3) Before free journal, ensure in-place updates complete

A

0 5

B

6 12111 2 3 4 7 8 9 10

transaction: write C to block 4; write T to block 6

C E is--

①Ensure 9,10,11 are written before writing ToEnd -
-

-

② Ensure itis
committed. Any failure after

will welday

flashing writes

todisk s2fsync()

- ↓areuse
barrier if you

y
ournal

CHECKSUM OPTIMIZATION

A

0 5

B

6 12111 2 3 4 7 8 9 10

Can we get rid of barrier between (9, 10, 11) and 12 ?

In last transaction block, store checksum
of rest of transaction

During recovery: If checksum does not
match, treat as not valid

write order before
9,10,11

12
4,6
12

write order after

- research

project

Tx Start
C
--Set

hash

--

date,this

OTHER OPTIMIZATIONS
Batched updates

- If two files are created, inode bitmap, inode etc. get written twice
- Mark as dirty in-memory and batch updates

Circular log

T4T3T2T1Journal:

0 128 MB

write
-

putboth inside same transaction
->

write

starts keep wing it

-
⑰

Sine

How to avoid writing all disk blocks Twice?

Observation: Most of writes are user data (esp sequential writes)

Strategy: journal all metadata, including
superblock, bitmaps, inodes, indirects, directories

For regular data, write it back whenever convenient.

I still go
to the

- - journal

I

data in files notbe in thejournal

METADATA JOURNALING

transaction: append to inode I

I’

0 5

B’ TxB B’ I’ TxE

6 12111 2 3 4 7 8 9 10

Crash !?!

bitmap imode

garbage
- -

-

replayed
after crash

Ordered Journaling

What happens if crash in between?

I D

0 5

B

6 12111 2 3 4 7 8 9 10

Still only journal metadata. But write data before the transaction!

write order
7

9, 10, 11
12

2, 4

-> defaultext3

--

O estar"B'I'Ed

- > -
-

- --

First data -
Crash

In contents -->
barrier<

-

-
replay and data has been written to

the T dist

SUMMARY

Crash consistency: Important problem in filesystem design!

Two main approaches
FSCK:

Fix file system image after crash happens
Too slow and only ensures consistency

Journaling
Write a transaction before in-place updates
Checksum, batching, ordered journal optimizations

NEXT STEPS

No class on Tuesday!

Next time we meet: How to create a file system optimized for writes

