Hollo '

jj'é IRV //

PERSISTENGE: FSCK, JOURNALING

Shivaram Venkataraman
CS 537, Spring 2023

ADMINISTRIVIA

. > Tems — 7T ,rq,w.,//
’_J___ OW\O ~ 1
Pro]ect 6 updates : /({W\A}

Midterm 2: Solutions, grades — 4

No class on Tuesday! —

AGENDA / LEARNING OUTCOMES

How to check for consistency with power failures / crashes?

How to ensure consistency in filesystem design?

RECAP

S\L}re'r

b

FS STRUCTS: SUPERBLOCK

b’

ke & O Crode

SHBPBE | § I g g1l
0o — —7
DIDIDIDIDIDIDYD
16 23
DIDIDIDIDIDRDYD
32 39
DIDIDIDIDIDRDYD
48 55

Basic FS configuration metadata, like block size, # of inodes

dofa Pt
DIDJDIDRDIDED YD
8 15

DJDIDIDRDRDEDRD
24 31
DJDIDIDIDIDEDRD
40 47
DJDIDIDIDIDEDRD
56 63

TIME

create /foo/bar

—>
data inode root foo bar root foo
bitmap bitmap inode inode inode data data
|. read
2. read
3. read
4. read
5.read
6.write
7.write
alle e 8.read
9.write
| 0.write
L
o differens Tlooper
C&u f; CJ’@J’/Z

S

FFS PLAGEMENT GROUPS

Tlos *¢ u, Je C/l»éﬂ}@’
7 pome 7 c

bp | group 2 group 3
f)fz{y&&i’d

Key idea: Keep inode close to data

Use groups across disks;

Strategy: allocate inodes and data blocks in same group.

POLICY SUMMARY .. | e gop @/

/b ¢

File inodes: allocate in same group with dir [e — r&7 ﬂw‘f

Dir inodes: allocate in new group with fewer used inodes than average group

e Aotk

First data block: allocate near inode A‘N,&le/

Other data blocks: allocate near previous block ot 1 pp PP < 7
D »? py

Large file data blocks: after 48KB, go to new group. T T P

Move to another group (w/ fewer than avg blocks) every subsequent | MB.

OTHER FFS FEATURES

FFS also introduced several new features:
— large blocks (with libc buffering / fragments)
— long file names —

— atomic rename L J b
— symbolic links < s
Ny gk ks

Inspired modern files systems, including ext2 and ext3, ext 't

FILE SYSTEM CONSISTENCY

FILE SYSTEM CONSISTENCY EXAMPLE

pok& = SB
1024 -

Superblock:field contains total number of blocks in FS
DATA=N 1924

—_—

Inode:field contains pointer to data block; possible DATA?
DATAin {0, 1,2,...,N- 1}

Pointers to block N or after are invalid! pddre —>

Total-blocks field has redundancy with inode pointers e

WHY IS CONSISTENCY CHALLENGING?

File system may perform several disk writes to redundant blocks
—\—1
If file system is interrupted between writes, may leave data in inconsistent state

What can interrupt write operations?
- power loss
- kernel panic

- reboot

o\l aele F".E APPEND EXAMPLE

0 oo i Bk
Inode | Data Inod ta Block - o uﬂy =
Bmap | Bmap nMNC S Ajﬂcjz
I[v1]
----- = Da
e roods P’
© Lo
Fﬂ./v & 0_7177@
/{’aurjﬁf Mate — ?&w[’e?’ Z
el) m o i Bt
. —— e e -
- ’\7.., Uja/f/’/C el
; s Mo
Crbag,z > SR o rﬁw(/?

HOW CAN FILE SYSTEM FIX INCONSISTENCIES?

Solution #1:
FSCK = file system checker

Strategy:
% \r
After crash, scan whole disk for contradictions and "fix”}f needed

—]

«

Keep file system off-line until FSCK completes

For example, how to tell if data bitmap block is consistent?
Read every valid inode+indirect block
If pointer to data block, the corresponding bit should be I; else bit is 0

FSCK CHECKS

rephcatel]

Is the list of free blocks correct?

Do superblocks match? —

Do number of dir entries equal inode link counts?
Do different inodes ever point to same block?
Are there any bad block pointers?

Do directories contain ““.” and ““..”?

FREE BLOCKS EXAMPLE

inode block
>

link_count = | (number 123)
data bitmap
oouoonoati WW‘?’ s Motk 1 7&&
for block 123 W Jock N
fix. o |

in pibmaf

LINK COUNT EXAMPLE

Dir Entry \

inode
link_count =4 2

Dir Entry / l

U}«MG
fob bt

FS
W»s/(ot

bk
wet” he

(p7e v

DUPLICATE POINTERS

pote
inode — block
link_count = | ' (number 123)

(o
inode) m
link_count = |

BAD POINTER

inode] | Lo
link_count = | ’\9?@9 (M;MU o 500‘°>
— (Ddek& fe)a‘h’
\ k
super block < Make iF %WL/

tot-blocks=8000 K

0U|Z 28 https://tinyurl.com/cs537-sp23-quiz28

(a) FILE SYSTEM STATE: Consistent or inconsistent? If inconsistent, how to fix?

Inode Bitmap : 11111111
—_————

Inode Table : [size=1l,ptr=0,type=d] [1 [1 [1 [] []1 [1 I[]

Data Bitmap : 10000000

Data (.m0, (M.."m0)1 1 1 01 1 11 11 1
THWMW

Inode Bitmap
Incde Table
Data Bitmap
Data

Inode Bitmap :
Inode Table
Data Bitmap
Data

11000000

[size=1,ptr=0,type=d] ([size=l,ptr=1,type=d] [] [] [] [] []
S ey o e
11000000) 1

[("'_" 0),{".:" C),

11100000
[size=1,ptr=0, type=d]
11100000

("a" ‘-)] t("'" 1)’(" " l‘\ [] [' [] [:

- ’—_——T;_Tr_—ii; ?mb*’ wo/

[size=1,ptr=1,type=r] [size=1l,ptr=2,type=r] []

c¢m."0), (".." 0)1 [DATA] [DATA] [] [] [] [] T[]

Ttondikenk -

(JMC

Ork 24 ”_”

ﬁi
S

o ©
.

PROBLEMS WITH FSCK

Problem 1I:

— Not always obvious how to fix file system image
— Don’t know “correct” state, just consistent one

— Easy way to get consistency: reformat disk!

PROBLEM 2: FSCK IS VERY SLOW

450017 [Phase 1 @ Phase 3 1\ Phase 54176
4000 % Phase 2 # Phase4 = .20 N

3500 1 3398
30001

N
[9)]
o
o

N
o
o
o

15001 T
10001
5001

Checking Time (Second)

150GB 300GB 450GB 600GB
File system image size

Checking a 600GB disk takes ~70 minutes

ffsck: The Fast File System Checker
Ao Ma, Chris Dragga, Andrea C.Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau

CONSISTENCY SOLUTION #2: JOURNALING

Goals
— Ok to do some recovery work after crash, but not to read entire disk

— Don’t move file system to just any consistent state, get correct state

Atomicity
— Definition of atomicity for concurrency: operations in critical sections are not
interrupted by operations on related critical sections
— Definition of atomicity for persistence: collections of writes are not interrupted
by crashes; either (all new) or (all old) data is visible

CONSISTENCY VS ATOMICITY

Say a set of writes moves the disk from state A to B

], 7
empty all states . aMwﬂ/ o 7“3/

consistent st?s/
0O —0
- N\
/ N\

" fsck gives consistency
Atomicity gives A or B.

<, JOURNAL LAYOUT vy %
s

ﬁom r\ﬂﬁ ﬂ{M'Y’r'j

i 'YV—OO‘/CY?
Super |Journal Group 0 Group 1 Group N
Inode | Data Inodes Data Blocks
Bmap | Bmap
_____ va | [oa | o6
Transaction
| Stk Tx @"ﬁz
- :
SitxB| Iv2] | Bv2] | Db |[TxE > 2. e Lotks :ﬂ/
S > 1%
— b bk C’M
4
besn Flot. e 47

JOURNAL WRITE AND CHECKPOINTS

/ \
Tx Sart % @""k
%, #
2 3 4 5 6 7 8 9 10 | |2
transaction: write A to block 5; write B to block 2 -
Checkpoint:Writing new data to in-place locations /50‘““01

\9 s fpv s M@f;

JOURNAL REUSE AND CHECKPOINTS

/ \

B A 52 A B TxE

2 3 4 5 6 7 8 9 |0 |l 12

transaction: write C to block 4; write T to block 6

ORDERING FOR CONSISTENCY

transaction: write C to block 4; write T to block 6

/ \
“Tr T
C Znd)
B _gA:_C_ Lr,é___:[:k
o | 2 3 4 5 6 7 8 9 10 11 12

' ~ ¢ ity gv\o{ — —
e 4 100N ar writfen L,Lq& v t’j T
@ e Txo W &wﬁ@ - A jﬁwlm’e/ "d’r@/ A TQMG} .
@ e ki Dok wits write order
210,11

Y dale /F)S\av&. ()

Barriers
|) Before journal commit, ensure journal entries complete 4,6
2) Before checkpoint, ensure journal commit complete
3) Before free journal, ensure in-place updates complete b = e 6)\0 nak

CHECKSUM OPTIMIZATION — ..

Can we get rid of barrier between (9, 10, I) and 12 ?

/ \
/r Stpat JEMk
B A LT ek
C) —Awn
hash
0 | 2 3 4 5 6 7 8 9 10 | | |2
In last transaction block, store checksum write order before write order after
of rest of transaction u\m @b q, 10,0, 12
. R —
During recovery: If checksum does not o 4,6 &6
12

match, treat as not valid

OTHER OPTIMIZATIONS

Pt | jmde pone Avarsa bt

Write

Batched updates — wrte

- If two files are created, inode bitmap, inode etc. get written twice
- Mark as dirty in-memory and batch updates

/y(wl/? szj, wir £

Circular log

128 M

:(lYEL

HOW TO AVOID WRITING ALL DISK BLOCKS TWICE?

Observation: Most of writes are user data (esp sequential writes)

superblock, bitmaps, inodes, indirects, directories

Strategy: journal all metadata, including]_) el % bo A
ol
o

For regular data, write it back whenever convenient.

L ,
dq}ia, L~ (}U@S e e fle 3/

o u-n\aj-

METADATA JOURNALING

m) o

,{2.,
B’ r ¥ “I TxB B I' TxE
2 3 4 5 6 7 8 9 10 1 12
WMJ

transaction: append to inode |

ad/m/ C arh

Crash '

ORDERED JOURNALING — *+*

Still only journal metadata. But write data before the transaction!
>uL WITRE Hd

Rstt | ™
B | 2, 4 B 1 _Ei
0 | 2 3 ‘\1 5 6 7 8 9 10 | J/Z_
, :) :

What happens if crash in between!? Coogt data write order
s o ; ’
oceriat Fn & 9,10, 11
a7 <\ |2
& 2,4

s e hat beon mtten B
(éﬁ,{%/(%r\ a’Ml g(q}t ;;/m

SUMMARY

Crash consistency: Important problem in filesystem design!

Two main approaches
FSCK:
Fix file system image after crash happens

Too slow and only ensures consistency

Journaling
Write a transaction before in-place updates

Checksum, batching, ordered journal optimizations

NEXT STEPS

No class on Tuesday!

Next time we meet: How to create a file system optimized for writes

