
PERSISTENCE: I/O DEVICES

Shivaram Venkataraman
CS 537, Spring 2023

ADMINISTRIVIA

Project 4: Grades today (hopefully?)
Project 5: How is it going?

Midterm 2
Venue : Social Sciences 6210
Time : 5.45pm
Practice exams: Check Canvas (Files à Old Exams)

--

-> Group

-> Canvas

- 7:15 pm

I'll postlinks on Canvas

playlist - Concurrency

AGENDA / LEARNING OUTCOMES

How does the OS interact with I/O devices?

What are the components of a hard disk drive?

RECAP

OPERATING SYSTEMS: THREE EASY PIECES

Three conceptual pieces

1. Virtualization

2. Concurrency

3. Persistence

Make each application
believe it has each
resource to itself
CPU and Memory

Provide mutual
exclusion, ordering-

-> Input, Output to

a process
- whatdoes OS

do?

Motivation

What good is a computer without any I/O devices?

keyboard, display, disks

We want:
- H/W that will let us plug in different devices

- OS that can interact with different combinations
Keyboard
- Processes20 OSDirk

devices T

Hardware support for I/O
Classic Hierarchy

~ 1000 y aB/s
Bandwidth Fast

-Bus -
Link

U

~10s of 93/s

Number of
100 -

500

MB/s devices

GPUS

or

display IOs I

GBI
Lands

drive
USB

Canonical Device

OS reads/writes to these

Status COMMAND DATADevice Registers

Status checks: polling vs. interrupts
Data transfer

Control: Invoking I/O

OS

datate-"
- External facing
--

Extra RAM
->

Firmware Internals
Smaller CPUs

Code which runs
on associateddevice

-

Example Write Protocol

while (STATUS == BUSY)
; // spin

Write data to DATA register
Write command to COMMAND register
while (STATUS == BUSY)

; // spin

Status COMMAND DATA

Microcontroller (CPU+RAM)
Extra RAM
Other special-purpose chips

WRITEeffect24 populated by OS

↳
write

to operationin
-

~

-

Rolling, waiting
for device

-
-

be ready
-> 512 bytes of

data

->

->
-

ewesitdeviceherateon

while (STATUS == BUSY) // 1
;

Write data to DATA register // 2
Write command to COMMAND register // 3
while (STATUS == BUSY) // 4

;

CPU:

Disk:

no work being doneuseful
->thistime

Wingfor P1 during

,

2
3,4

A BCPU:

Disk: C A

B B AA

1

while (STATUS == BUSY) // 1

wait for interrupt;

Write data to DATA register // 2

Write command to COMMAND register // 3

while (STATUS == BUSY) // 4

wait for interrupt;

Interrupts!Timer
BLOCKED to sleep

again markis
interrupts ↑ *
- O /

- r I operation is

e Linterruptraise an
done

interrupt
Interruptstypically

CPU
improve
utilization

If

Interrupts vs. Polling

Are interrupts always better than polling?

Fast device: Better to spin than take interrupt overhead
– Device time unknown? Hybrid approach (spin then use interrupts)

Flood of interrupts arrive
– Can lead to livelock (always handling interrupts)
– Better to ignore interrupts while make some progress handling them

Other improvement
– Interrupt coalescing (batch together several interrupts)

~pull
-> approximation

--

->
not making useful

- progress

↳ number of I/O requests ->
handle all of
them atonce!

Protocol Variants

Status checks: polling vs. interrupts
Data transfer
Control: Invoking I/O

Status COMMAND DATA

Microcontroller (CPU+RAM)
Extra RAM
Other special-purpose chips

-

~

DATA TRANSFER COSTS
CPU todo other things

CDU isactively involved - notusing

me

I
CPU is copying data

to the disk

Programmed I/O vs. Direct Memory Access

PIO (Programmed I/O):
– CPU directly tells device what the data is

DMA (Direct Memory Access):
– CPU leaves data in memory

– Device reads data directly from memory

-> helpfrom hardware
-

ME gin
for

↳fre
at

-CPU
can ran other

processes
- I

-

-

-

-

while (STATUS == BUSY) // 1
;

Write data to DATA register // 2
Write command to COMMAND register // 3
while (STATUS == BUSY) // 4

;

ACPU:

Disk: C A

B B A

1 3,4

-> Interrupts

-DMA

-> Interrupts

Protocol Variants

Status checks: polling vs. interrupts

PIO vs DMA

Status COMMAND DATA

Microcontroller (CPU+RAM)
Extra RAM
Other special-purpose chips

Control: Invoking I/O

-

while (STATUS == BUSY) // 1
;

Write data to DATA register // 2
Write command to COMMAND register // 3
while (STATUS == BUSY) // 4

;

Status COMMAND DATA

Microcontroller (CPU+RAM)
Extra RAM
Other special-purpose chips

Special Instructions vs. Mem-Mapped I/O

Special instructions
– each device has a port

– in/out instructions (x86) communicate with device

Memory-Mapped I/O

– H/W maps registers into address space
– loads/stores sent to device

Doesn’t matter much (both are used)

x86 instructions ->
Device

IN REGISTER PORT

OUT REGISTER PORT

Or EAX 1 write contents of

ForinterartisanalWriters
-
-

1 DNAengine

Protocol Variants

Status checks: polling vs. interrupts

PIO vs DMA

Special instructions vs. Memory mapped I/O

Status COMMAND DATA

Microcontroller (CPU+RAM)
Extra RAM
Other special-purpose chips

Storage Stack

application
file system
scheduler

driver
hard drive

build common interface
on top of all HDDs

DEVICE DRIVERS
Unified

vim -> Program /

file
↓

disten block

->each has- device-

↑

Hard SSD is its device

Disk drive driver

Variety is a Challenge

Problem:

– many, many devices

– each has its own protocol

How can we avoid writing a slightly different OS for each H/W combination?

Write device driver for each device

Drivers are 70% of Linux source code

Modularity-> stability

->
millions of code

QUIZ 20

If you have a fast non-volatile memory based storage device,
which approach would work better?

What part of a device protocol is improved by using DMA ?

https://tinyurl.com/cs537-sp23-quiz20

-> Polling is better if device is fast

avoid interruptoverheads

Wait for device to be free

Freedata
-

write command

Wait for operation to complete

HARD DISKS

HARD DISK INTERFACE

Disk has a sector-addressable address space
Appears as an array of sectors

Sectors are typically 512 bytes

Main operations: reads + writes to sectors

Mechanical and slow (?)

OS perspective

~write

E10B
sector:512 bytes

Platter

#

Surface

Surface

Spindle

operation on

both in I-

RPM?

Motor connected to spindle spins platters

Rate of rotation: RPM

10000 RPM à single rotation is 6 ms

10,000 rotations 60,000 ms
->

1 rotation 6 my

motor

↓ ~
I

-
- I

-

1500 RPM -> rotations per t
minute

Surface is divided into rings: tracks

Stack of tracks(across platters): cylinder =
%j0

1
23

06
5 4

7
8
9

10
11

15
14

13
12

16

17

18

19

23

22

21

20

Tracks are divided into
numbered sectors

rotate

I
X
-
0
arm

to

do the

read

1
23

06
5 4

7
8
9

10
11

15
14

13
12

16

17

18

19

23

22

21

20

Heads on a moving arm can
read from each surface. -

seek

operation

READING DATA FROM DISK

Rotational delay
10,000 ROM

-> wait for half

a
rotation to

X k complete

Disk read time
rotation

3m =time for %z

I
I

data transfer time
<??7

READING DATA FROM DISK

Seek Time
multi zoned

-

-I~-
-
- -> Time for arm
-

I I -
-

tomore to the
-

-
- = ~ right track

~
=
-

- while seek is

1) -
F going on,

disk is

also rotating

Time to Read/write

Three components:
Time = seek + rotation + transfer time

data size

=how how much time
-

I

far disk + does ittake link speed
arm

need
for 1

rotation

to move

Seek, Rotate, Transfer

Seek cost: Function of cylinder distance
Not purely linear cost
Must accelerate, coast, decelerate, settle
Settling alone can take 0.5 - 2 ms

Entire seeks often takes 4 - 10 ms
Average seek = 1/3 of max seek

Depends on rotations per minute (RPM)
7200 RPM is common, 15000 RPM is high end

Average rotation?

Pretty fast: depends on RPM and sector density.

100+ MB/s is typical for maximum transfer rate

innew mosttrack

outer most track

-> I time takenrotatet

QUIZ 21

What is the time for 4KB
random read?

https://tinyurl.com/cs537-sp23-quiz21

NEXT STEPS

Advanced disk features
Scheduling disk requests

Midterm 2 soon!

