PERSISTENCE: I/O DEVICES

Shivaram Venkataraman CS 537, Spring 2023

ADMINISTRIVIA

Project 4: Grades today (hopefully?) Project 5: How is it going?

Midterm 2
Date: April 4th, 2023
Venue : Social Sciences 6210
Time : 5.45pm to 7.15pm
Practice exams: Check Canvas (Files → Old Exams)

AGENDA / LEARNING OUTCOMES

How does the OS interact with I/O devices?

What are the components of a hard disk drive?

RECAP

OPERATING SYSTEMS: THREE EASY PIECES

Three conceptual pieces

Make each application believe it has each resource to itself CPU and Memory

I.Virtualization

2. Concurrency

Provide mutual exclusion, ordering

3. Persistence

MOTIVATION

What good is a computer without any I/O devices? keyboard, display, disks

We want:

- **H/W** that will let us plug in different devices
- **OS** that can interact with different combinations

HARDWARE SUPPORT FOR I/O

CANONICAL DEVICE

OS reads/writes to these

Device Registers

Status COMMAND DATA

Status checks: polling vs. interrupts

Data transfer

Control: Invoking I/O

EXAMPLE WRITE PROTOCOL

	Status		COMMAND		DATA	
Microcontroller (CPU+RAM)						
Extra RAM						
Other special-purpose chips						

```
while (STATUS == BUSY)
; // spin
Write data to DATA register
Write command to COMMAND register
while (STATUS == BUSY)
; // spin
```

CPU:

Disk:

```
while (STATUS == BUSY) // 1
;
Write data to DATA register // 2
Write command to COMMAND register // 3
while (STATUS == BUSY) // 4
;
```


Interrupts!

while (STATUS == BUSY) // 1
wait for interrupt;
Write data to DATA register // 2
Write command to COMMAND register // 3
while (STATUS == BUSY) // 4
wait for interrupt;

INTERRUPTS VS. POLLING

Are interrupts always better than polling?

Fast device: Better to spin than take interrupt overhead

- Device time unknown? Hybrid approach (spin then use interrupts)

Flood of interrupts arrive

- Can lead to livelock (always handling interrupts)
- Better to ignore interrupts while make some progress handling them

Other improvement

- Interrupt coalescing (batch together several interrupts)

PROTOCOL VARIANTS

	Status	COMMAND	DATA	
Microcontroller (CPU+RAM) Extra RAM				
Other special-purpose chips				

Status checks: polling vs. interrupts

Data transfer

Control: Invoking I/O

DATA TRANSFER COSTS

PROGRAMMED I/O VS. DIRECT MEMORY ACCESS

PIO (Programmed I/O):

- CPU directly tells device what the data is
- **DMA** (Direct Memory Access):
 - CPU leaves data in memory
 - Device reads data directly from memory


```
while (STATUS == BUSY) // 1
;
Write data to DATA register // 2
Write command to COMMAND register // 3
while (STATUS == BUSY) // 4
```

PROTOCOL VARIANTS

Status	COMMAND	DATA		
Microcontroller (CPU+RAM) Extra RAM Other special-purpose chips				

Status checks: polling vs. interrupts

PIO vs DMA

Control: Invoking I/O

SPECIAL INSTRUCTIONS VS. MEM-MAPPED I/O

Special instructions

- each device has a port
- in/out instructions (x86) communicate with device

Memory-Mapped I/O

- H/W maps registers into address space
- loads/stores sent to device

Doesn't matter much (both are used)

PROTOCOL VARIANTS

Status	COMMAND	DATA			
Microcontroller (CPU+RAM) Extra RAM					

Status checks: polling vs. interrupts

PIO vs DMA

Special instructions vs. Memory mapped I/O

DEVICE DRIVERS

	Application POSIX API [open, read, write, close, etc.]			
•••••				
	File System	Raw		
	Generic Block Interface [block read/write]			
	Generic Block Layer			
	Specific Block Interface [protocol-specific read/write]			
	Device Driver [SCSI, AT	A, etc.]		

VARIETY IS A CHALLENGE

Problem:

- many, many devices
- each has its own protocol

How can we avoid writing a slightly different OS for each H/W combination?

Write device driver for each device

Drivers are **70%** of Linux source code

QUIZ 20

https://tinyurl.com/cs537-sp23-quiz20

If you have a fast non-volatile memory based storage device, which approach would work better?

What part of a device protocol is improved by using DMA?

HARD DISKS

HARD DISK INTERFACE

Disk has a sector-addressable address space Appears as an array of sectors

Sectors are typically 512 bytes

Main operations: reads + writes to sectors

Mechanical and slow (?)

Platter

Spindle

RPM?

Motor connected to spindle spins platters

Rate of rotation: RPM

10000 RPM \rightarrow single rotation is 6 ms

Surface is divided into rings: tracks

Stack of tracks(across platters): cylinder

Tracks are divided into numbered sectors

Heads on a moving arm can read from each surface.

READING DATA FROM DISK

Rotational delay

READING DATA FROM DISK

Seek Time

TIME TO READ/WRITE

Three components:

Time = seek + rotation + transfer time

SEEK, ROTATE, TRANSFER

- Seek cost: Function of cylinder distance
 - Not purely linear cost
 - Must accelerate, coast, decelerate, settle
 - Settling alone can take 0.5 2 ms
- Entire seeks often takes 4 10 ms Average seek = 1/3 of max seek

Depends on rotations per minute (RPM) 7200 RPM is common, I 5000 RPM is high end

Average rotation?

Pretty fast: depends on RPM and sector density.

100+ MB/s is typical for maximum transfer rate

1

D

https://tinyurl.com/cs537-sp23-quiz21

What is the time for 4KB random read?

QUIZ 21

	Cheetan 15K.5	Barracuda
Capacity	300 GB	1 TB
RPM	15,000	7,200
Average Seek	4 ms	9 ms
Max Transfer	125 MB/s	105 MB/s
Platters	4	4
Cache	16 MB	16/32 MB
Connects via	SCSI	SATA

NEXT STEPS

Advanced disk features

Scheduling disk requests

Midterm 2 soon!