
PERSISTENCE: I/O DEVICES

Shivaram Venkataraman
CS 537, Spring 2023

ADMINISTRIVIA

Project 4: Grades today (hopefully?)
Project 5: How is it going?

Midterm 2
Date:April 4th, 2023
Venue : Social Sciences 6210
Time : 5.45pm to 7.15pm
Practice exams: Check Canvas (Files à Old Exams)

AGENDA / LEARNING OUTCOMES

How does the OS interact with I/O devices?

What are the components of a hard disk drive?

RECAP

OPERATING SYSTEMS: THREE EASY PIECES

Three conceptual pieces

1. Virtualization

2. Concurrency

3. Persistence

Make each application
believe it has each
resource to itself
CPU and Memory

Provide mutual
exclusion, ordering

Motivation

What good is a computer without any I/O devices?

keyboard, display, disks

We want:
- H/W that will let us plug in different devices

- OS that can interact with different combinations

Hardware support for I/O

Canonical Device

OS reads/writes to these

Status COMMAND DATADevice Registers

Status checks: polling vs. interrupts
Data transfer

Control: Invoking I/O

Example Write Protocol

while (STATUS == BUSY)
; // spin

Write data to DATA register
Write command to COMMAND register
while (STATUS == BUSY)

; // spin

Status COMMAND DATA

Microcontroller (CPU+RAM)
Extra RAM
Other special-purpose chips

while (STATUS == BUSY) // 1
;

Write data to DATA register // 2
Write command to COMMAND register // 3
while (STATUS == BUSY) // 4

;

CPU:

Disk:

2
3,4

A BCPU:

Disk: C A

B B AA

1

while (STATUS == BUSY) // 1

wait for interrupt;

Write data to DATA register // 2

Write command to COMMAND register // 3

while (STATUS == BUSY) // 4

wait for interrupt;

Interrupts!

Interrupts vs. Polling

Are interrupts always better than polling?

Fast device: Better to spin than take interrupt overhead
– Device time unknown? Hybrid approach (spin then use interrupts)

Flood of interrupts arrive
– Can lead to livelock (always handling interrupts)
– Better to ignore interrupts while make some progress handling them

Other improvement
– Interrupt coalescing (batch together several interrupts)

Protocol Variants

Status checks: polling vs. interrupts
Data transfer
Control: Invoking I/O

Status COMMAND DATA

Microcontroller (CPU+RAM)
Extra RAM
Other special-purpose chips

DATA TRANSFER COSTS

Programmed I/O vs. Direct Memory Access

PIO (Programmed I/O):
– CPU directly tells device what the data is

DMA (Direct Memory Access):
– CPU leaves data in memory

– Device reads data directly from memory

while (STATUS == BUSY) // 1
;

Write data to DATA register // 2
Write command to COMMAND register // 3
while (STATUS == BUSY) // 4

;

ACPU:

Disk: C A

B B A

1 3,4

Protocol Variants

Status checks: polling vs. interrupts

PIO vs DMA

Status COMMAND DATA

Microcontroller (CPU+RAM)
Extra RAM
Other special-purpose chips

Control: Invoking I/O

while (STATUS == BUSY) // 1
;

Write data to DATA register // 2
Write command to COMMAND register // 3
while (STATUS == BUSY) // 4

;

Status COMMAND DATA

Microcontroller (CPU+RAM)
Extra RAM
Other special-purpose chips

Special Instructions vs. Mem-Mapped I/O

Special instructions
– each device has a port

– in/out instructions (x86) communicate with device

Memory-Mapped I/O

– H/W maps registers into address space
– loads/stores sent to device

Doesn’t matter much (both are used)

Protocol Variants

Status checks: polling vs. interrupts

PIO vs DMA

Special instructions vs. Memory mapped I/O

Status COMMAND DATA

Microcontroller (CPU+RAM)
Extra RAM
Other special-purpose chips

Storage Stack

application
file system
scheduler

driver
hard drive

build common interface
on top of all HDDs

DEVICE DRIVERS

Variety is a Challenge

Problem:

– many, many devices

– each has its own protocol

How can we avoid writing a slightly different OS for each H/W combination?

Write device driver for each device

Drivers are 70% of Linux source code

QUIZ 20

If you have a fast non-volatile memory based storage device,
which approach would work better?

What part of a device protocol is improved by using DMA ?

https://tinyurl.com/cs537-sp23-quiz20

HARD DISKS

HARD DISK INTERFACE

Disk has a sector-addressable address space
Appears as an array of sectors

Sectors are typically 512 bytes

Main operations: reads + writes to sectors

Mechanical and slow (?)

Platter

Surface

Surface

Spindle

RPM?

Motor connected to spindle spins platters

Rate of rotation: RPM

10000 RPM à single rotation is 6 ms

Surface is divided into rings: tracks

Stack of tracks(across platters): cylinder

1
23

06
5 4

7
8
9

10
11

15
14

13
12

16

17

18

19

23

22

21

20

Tracks are divided into
numbered sectors

1
23

06
5 4

7
8
9

10
11

15
14

13
12

16

17

18

19

23

22

21

20

Heads on a moving arm can
read from each surface.

READING DATA FROM DISK

Rotational delay

READING DATA FROM DISK

Seek Time

Time to Read/write

Three components:
Time = seek + rotation + transfer time

Seek, Rotate, Transfer

Seek cost: Function of cylinder distance
Not purely linear cost
Must accelerate, coast, decelerate, settle
Settling alone can take 0.5 - 2 ms

Entire seeks often takes 4 - 10 ms
Average seek = 1/3 of max seek

Depends on rotations per minute (RPM)
7200 RPM is common, 15000 RPM is high end

Average rotation?

Pretty fast: depends on RPM and sector density.

100+ MB/s is typical for maximum transfer rate

QUIZ 21

What is the time for 4KB
random read?

https://tinyurl.com/cs537-sp23-quiz21

NEXT STEPS

Advanced disk features
Scheduling disk requests

Midterm 2 soon!

