PERSISTENGE: 1/0 DEVIGES

Shivaram Venkataraman
CS 537, Spring 2023

ADMINISTRIVIA

Project 4: Grades today (hopefully?)
Project 5: How is it going?

Midterm 2
Date: April 4t,2023

Venue : Social Sciences 6210

Time :5.45pm to 7.15pm
Practice exams: Check Canvas (Files = Old Exams)

AGENDA / LEARNING OUTCOMES

How does the OS interact with I/O devices!?

What are the components of a hard disk drive?

RECAP

OPERATING SYSTEMS: THREE EASY PIECES

Three conceptual pieces

Make each application
believe it has each

resource to itself
CPU and Memory

| .Virtualization

Provide mutual
exclusion, ordering

2. Concurrency

3. Persistence

MOTIVATION

What good is a computer without any /O devices!?

keyboard, display, disks

We want:
- H/W that will let us plug in different devices

- OS that can interact with different combinations

HARDWARE SUPPORT FOR 1/0

CPU Memory
4 Memory Bus
(proprietary)
< » General /O Bus
(e.g., PCI)
Graphics
< » Peripheral I/O Bus
(e.g., SCSI, SATA, USB)

Egs

Graphics |<(E—>

PCle
Graphics

PCle

Network

Memory
Interconnect

CPU -’ Memory

S
()]
eSATA —
J | Disk
IO Chip DIl
DiL
Di
m
%)
D
2l o
3l|2
Q| |2
ol |=
X

CANONICAL DEVICE

OS reads/writes to these

Device Registers Status COMMAND DATA

Status checks: polling vs. interrupts
Data transfer

Control: Invoking 1/O

EXAMPLE WRITE PROTOCOL

Status COMMAND DATA

Microcontroller (CPU+RAM)
Extra RAM
Other special-purpose chips

while (STATUS == BUSY)
; // spin
Write data to DATA register

Write command to COMMAND register
while (STATUS == BUSY)

; // spin

CPU:
Disk:

while

Write
Write
while

(STATUS

data to
command
(STATUS

== BUSY)

DATA register
to COMMAND register
== BUSY)

| 34 |
| 2 | Interrupts!

V o\
oy A| B |A] B |A[B
Disk:

while (STATUS == BUSY) // 1
walit for interrupt;

Write data to DATA register // 2

Write command to COMMAND register // 3

while (STATUS == BUSY) // 4

walit for interrupt;

INTERRUPTS V. POLLING

Are interrupts always better than polling?

Fast device: Better to spin than take interrupt overhead

— Device time unknown? Hybrid approach (spin then use interrupts)
Flood of interrupts arrive

— Can lead to livelock (always handling interrupts)

— Better to ignore interrupts while make some progress handling them
Other improvement

— Interrupt coalescing (batch together several interrupts)

PROTOCOL VARIANTS

Status COMMAND DATA

Microcontroller (CPU+RAM)
Extra RAM
Other special-purpose chips

Data transfer

Control: Invoking 1/0O

DATA TRANSFER GOSTS

CPU |1 |1 |1 |1 |1|lc]|c

Disk 1111111

PROGRAMMED I/0 VS. DIREGT MEMORY ACCESS

PIO (Programmed I/O):
— CPU directly tells device what the data is

DMA (Direct Memory Access):
— CPU leaves data in memory

— Device reads data directly from memory

CPU [1 [1 [1] 1

DMA clc|cC

Disk 1111711

I 3,4
¥ ¥
I

while (STATUS == BUSY) // 1

Write command to COMMAND register // 3
while (STATUS == BUSY) // 4

PROTOCOL VARIANTS

Status COMMAND DATA

Microcontroller (CPU+RAM)
Extra RAM
Other special-purpose chips

Status checks: polling vs. interrupts

PIO vs DMA

Control: Invoking 1/O

Status COMMAND DATA

Microcontroller (CPU+RAM)
Extra RAM
Other special-purpose chips

while (STATUS == BUSY) // 1
Write data to DATA register /] 2

Write command to COMMAND register // 3
while (STATUS == BUSY) // 4

"
’

SPECIAL INSTRUCTIONS VS. MEM-MAPPED |/0

Special instructions
— each device has a port

— infout instructions (x86) communicate with device
Memory-Mapped I/O
— H/W maps registers into address space

— loads/stores sent to device

Doesn’t matter much (both are used)

PROTOCOL VARIANTS

Status COMMAND DATA

Microcontroller (CPU+RAM)
Extra RAM
Other special-purpose chips

Status checks: polling vs. interrupts
PIO vs DMA

Special instructions vs. Memory mapped I/O

DEVICE DRIVERS

Application g
sssses POSIX API [open, read, write, close, etc.] LLLEEE
File System Raw
Generic Block Interface [block read/write] §
Generic Block Layer g
Specific Block Interface [protocol-specific read/write] _gE‘:

Device Driver [SCSI, ATA, etc.]

VARIETY IS A CHALLENGE

Problem:
— many, many devices
— each has its own protocol
How can we avoid writing a slightly different OS for each H/W combination?

Write device driver for each device

Drivers are 70% of Linux source code

QU |Z 20 https://tinyurl.com/cs537-sp23-quiz20

If you have a fast non-volatile memory based storage device,
which approach would work better?

What part of a device protocol is improved by using DMA ?

w
S
D
=)
()
oC
—
-

HARD DISK INTERFACE

Disk has a sector-addressable address space
Appears as an array of sectors

Sectors are typically 512 bytes
Main operations: reads + writes to sectors

Mechanical and slow (?)

Platter

Surface

Spindle

|

Surface

RPM?

Motor connected to spindle spins platters

Rate of rotation: RPM

10000 RPM > single rotation is 6 ms

Surface is divided into rings: tracks

Stack of tracks(across platters): cylinder

Tracks are divided into
numbered sectors

Heads on a moving arm can
read from each surface.

READING DATA FROM DISK

Rotates this way Rotational delay

READING DATA FROM DISK

Rotates this way
‘—

Seek Time

TIME TO READ/WRITE

Three components:

Time = seek + rotation + transfer time

SEEK, ROTATE, TRANSFER

Seek cost: Function of cylinder distance Depends on rotations per minute (RPM)
Not purely linear cost 7200 RPM is common, 15000 RPM is high end
Must accelerate, coast, decelerate, settle

. Average rotation!?
Settling alone can take 0.5 - 2 ms

Entire seeks often takes 4 - |0 ms

Average seek = /3 of max seek Pretty fast: depends on RPM and sector density.

|00+ MB/s is typical for maximum transfer rate

0U|Z 2 1 https://tinyurl.com/cs537-sp23-quiz2l

What is the time for 4KB
random read?

Cheetah 15K.5 Barracuda
Capacity 300 GB 1TB
RPM 15,000 7,200
Average Seek 4 ms 9 ms
Max Transfer 125 MB/s 105MB/s
Platters 4 4
Cache 16 MB 16/32 MB
Connects via SCSI SATA

NEXT STEPS

Advanced disk features

Scheduling disk requests

Midterm 2 soon!

