
PERSISTENCE: Log-structured FileSystem

Shivaram Venkataraman
CS 537, Spring 2023

ADMINISTRIVIA

Project 5, 6 grading

Project 7 out!

Project 8 update!

Midterm 3 conflicts

AGENDA / LEARNING OUTCOMES

How to design a filesystem that performs better for small writes?

What are some similarities or differences with FFS?

RECAP

FS StructS

S IB DB I I I I I
0 7

D D D D D D D D
8 15

D D D D D D D D
16 23

D D D D D D D D
24 31

D D D D D D D D
32 39

D D D D D D D D
40 47

D D D D D D D D
48 55

D D D D D D D D
56 63

How can file system fix Inconsistencies?

Solution #1:

FSCK = file system checker
Strategy:

After crash, scan whole disk for contradictions and “fix” if needed

Keep file system off-line until FSCK completes

For example, how to tell if data bitmap block is consistent?
Read every valid inode+indirect block
If pointer to data block, the corresponding bit should be 1; else bit is 0

ORDERING FOR CONSISTENCY

0 5 6 12111 2 3 4 7 8 9 10

Transaction: write C to block 4; write T to block 6 write order
9,10,11

12
4,6

Ordered Journal

Append to a file
Data (D) in block 7
Inode (I) in block 4
Bitmap (B) in block 2

I D

0 5

B

6 12111 2 3 4 7 8 9 10

QUIZ 29 https://tinyurl.com/cs537-sp23-quiz28

LOG STRUCTURED FILE SYSTEM (LFS)

LFS Performance Goal
Motivation:

– Growing gap between sequential and random I/O performance
– Especially true in SSDs!
– RAID-5 especially bad with small random writes

Idea: use disk purely sequentially
Design for writes to use disk sequentially – how?

WHERE DO INODES GO?

LFS Strategy

File system buffers writes in main memory until “enough” data
– How much is enough?
– Enough to get good sequential bandwidth from disk (MB)

Write buffered data sequentially to new segment on disk

Never overwrite old info: old copies left behind

BUFFERED WRITES

WHAT ELSE IS DIFFERENT FROM FFS?

What data structures has LFS removed?

allocation structs: data + inode bitmaps

How to do reads?

Inodes are no longer at fixed offset

Use imap structure to map:
inode number => inode location on disk

IMAP EXPLAINED

READING IN LFS

1. Read the Checkpoint region
2. Read all imap parts, cache in mem
3. To read a file:

1. Lookup inode location in imap
2. Read inode
3. Read the file block

GARBAGE COLLECTION

What to do with old data?

Old versions of files à garbage

Approach 1: garbage is a feature!
– Keep old versions in case user wants to revert files later
– Versioning file systems
– Example: Dropbox

Approach 2: garbage collection

Garbage Collection

Need to reclaim space:
1. When no more references (any file system)
2. After newer copy is created (COW file system)

LFS reclaims segments (not individual inodes and data blocks)
- Want future overwites to be to sequential areas
- Tricky, since segments are usually partly valid

FREEFREE

Garbage Collection

USEDUSEDdisk segments: USEDUSED

60% 10% 95% 35%

FREEUSED

Garbage Collection

USEDUSEDdisk segments: USEDUSED

60% 10% 95% 35% 95%

compact 2 segments to one

When moving data blocks, copy new inode to point to it
When move inode, update imap to point to it

Garbage Collection

General operation:
Pick M segments, compact into N (where N < M).

Mechanism:
How does LFS know whether data in segments is valid?

Policy:
Which segments to compact?

Garbage Collection Mechanism

Is an inode the latest version?
– Check imap to see if this inode is pointed to
– Fast!

Is a data block the latest version?
– Scan ALL inodes to see if any point to this data
– Very slow!

How to track information more efficiently?
– Segment summary lists inode and data offset corresponding to each data

block in segment (reverse pointers)

SEGMENT SUMMARY

(N, T) = SegmentSummary[A];

inode = Read(imap[N]);

if (inode[T] == A)
// block D is alive

else
// block D is garbage

Garbage Collection

General operation:
Pick M segments, compact into N (where N < M).

Mechanism:
Use segment summary, imap to determine liveness

Policy:
Which segments to compact?

• clean most empty first
• clean coldest (ones undergoing least change)

• more complex heuristics…

Crash Recovery

What data needs to be recovered after a crash?
– Need imap (lost in volatile memory)

Better approach?
– Occasionally save to checkpoint region the pointers to imap pieces

How often to checkpoint?
– Checkpoint often: random I/O
– Checkpoint rarely: lose more data, recovery takes longer
– Example: checkpoint every 30 secs

CRASH RECOVERY

S1S0disk: S3S2

ptrs to
imap piecesmemory:

checkpoint
after last

checkpoint

tail after last
checkpoint

Checkpoint Summary

Checkpoint occasionally (e.g., every 30s)

Upon recovery:
- read checkpoint to find most imap pointers and segment tail
- find rest of imap pointers by reading past tail

What if crash during checkpoint?

Checkpoint Strategy

Have two checkpoint regions
Only overwrite one checkpoint at a time
Use checksum/timestamps to identify newest checkpoint

S1S0disk: S3S2

LFS SUMMARY

Journaling:
Put final location of data wherever file system chooses
(usually in a place optimized for future reads)

LFS:
Puts data where it’s fastest to write, assume future reads cached in memory

Other COW file systems: WAFL, ZFS, btrfs

NEXT STEPS

Next class: SSDs!

