
CONCURRENCY: LOCKS

Shivaram Venkataraman
CS 537, Spring 2023

ADMINISTRIVIA

- Access slides and notes at ~arebello instead of ~shivaram

https://pages.cs.wisc.edu/~shivaram/cs537-sp23/

https://pages.cs.wisc.edu/~arebello/cs537-sp23/

- Piazza and TAs for everything else

AGENDA / LEARNING OUTCOMES

Concurrency
What are some of the challenges in concurrent execution?
How do we design locks to address this?

RECAP

Motivation for Concurrency

TIMELINE VIEW

Thread 1 Thread 2
mov 0x123, %eax

mov 0x123, %eax
add %0x2, %eax

mov %eax, 0x123

add %0x1, %eax

mov %eax, 0x123

Anthony

Anthony

Anthony

Anthony

Anthony

Anthony

What do we want?

Want 3 instructions to execute as an uninterruptable group
That is, we want them to be atomic

mov 0x123, %eax
add %0x1, %eax
mov %eax, 0x123

More general: Need mutual exclusion for critical sections
if thread A is in critical section C, thread B isn’t
(okay if other threads do unrelated work)

Anthony

Anthony

Anthony

Anthony

Anthony

Anthony

Lock Implementation Goals

Correctness
– Mutual exclusion

Only one thread in critical section at a time
– Progress (deadlock-free)

If several simultaneous requests, must allow one to proceed
– Bounded (starvation-free)

Must eventually allow each waiting thread to enter

Fairness: Each thread waits for same amount of time
Performance: CPU is not used unnecessarily

Anthony

Anthony

Anthony

Anthony

Anthony

Implementing Synchronization

Atomic operation: No other instructions can be interleaved

Approaches
- Disable interrupts
- Locks using loads/stores
- Using special hardware instructions

Implementing Locks: W/ Interrupts

Turn off interrupts for critical sections
- Prevent dispatcher from running another thread
- Code between interrupts executes atomically

Disadvantages?
Only works on uniprocessors
Process can keep control of CPU for arbitrary length
Cannot perform other necessary work

void acquire(lockT *l) {
disableInterrupts();

}

void release(lockT *l) {
enableInterrupts();

}

Anthony

Anthony

Anthony

Implementing LOCKS: w/ Load+Store

Code uses a single shared lock variable

void release(Boolean *lock) {
*lock = false;

}

// shared variable
boolean lock = false;
void acquire(Boolean *lock) {

while (*lock) /* wait */ ;
*lock = true;

}

Does this work? What situation can cause this to not work?

Anthony

Anthony

Anthony

Race Condition with LOAD and STORE

*lock == 0 initially

Thread 1 Thread 2
while(*lock == 1)

while(*lock == 1)
*lock = 1

*lock = 1

Both threads grab lock!
Problem: Testing lock and setting lock are not atomic

Anthony

Anthony

Anthony

Anthony

Anthony

xchg: atomic exchange or test-and-set

// xchg(int *addr, int newval)
// return what was pointed to by addr
// at the same time, store newval into addr
int xchg(int *addr, int newval) {
int old = *addr;
*addr = newval;
return old;

}

How do we solve this ? Get help from the hardware!

movl 4(%esp), %edx
movl 8(%esp), %eax
xchgl (%edx), %eax
ret

Anthony

Anthony

Anthony

Anthony

Anthony

Anthony

Anthony

LOCK Implementation with XCHG

typedef struct __lock_t {
int flag;

} lock_t;

void init(lock_t *lock) {
lock->flag = ??;

}

void acquire(lock_t *lock) {
????;
// spin-wait (do nothing)

}

void release(lock_t *lock) {
lock->flag = ??;

}

int xchg(int *addr, int newval)

Anthony

Anthony

Anthony

Anthony

Anthony

Anthony

Anthony

Anthony

Anthony

Anthony

Anthony

Anthony

Anthony

Anthony

Anthony

Anthony

Anthony

Anthony

Anthony

Other Atomic HW Instructions

int CompareAndSwap(int *addr, int expected, int new) {
int actual = *addr;
if (actual == expected)
*addr = new;

return actual;
}

void acquire(lock_t *lock) {
while(CompareAndSwap(&lock->flag, ,) ==) ;
// spin-wait (do nothing)

}

Anthony

Anthony

Anthony

Anthony

Anthony

Anthony

Anthony

Anthony

Anthony

Anthony

Anthony

spin spin spin spin

Basic Spinlocks are Unfair

A B

0 20 40 60 80 100 120 140 160

A B A B A B

lock
lockunlock lockunlock lockunlock lockunlock

Scheduler is unaware of locks/unlocks!

Anthony

Anthony

Anthony

Fairness: Ticket Locks

Idea: reserve each thread’s turn to use a lock.
Each thread spins until their turn.
Use new atomic primitive, fetch-and-add

Acquire: Grab ticket; Spin while not thread’s ticket != turn
Release: Advance to next turn

int FetchAndAdd(int *ptr) {
int old = *ptr;
*ptr = old + 1;
return old;

}

Anthony

Anthony

0
1
2
3
4
5
6
7

A lock():
B lock():
C lock():

A unlock():

A lock():
B unlock():

C unlock():
A unlock():

Ticket Lock ExampLE

Ticket Turn

Anthony

Anthony

Anthony

Anthony

Anthony

Anthony

Anthony

Anthony

Anthony

Anthony

Anthony

Anthony

Anthony

Anthony

Anthony

Anthony

Anthony

Anthony

Anthony

Anthony

Anthony

Anthony

Anthony

Ticket Lock Implementation

typedef struct __lock_t {
int ticket;
int turn;

}

void lock_init(lock_t *lock) {
lock->ticket = 0;
lock->turn = 0;

}

void acquire(lock_t *lock) {
int myturn = FAA(&lock->ticket);
// spin
while (lock->turn != myturn);

}

void release(lock_t *lock) {
FAA(&lock->turn);

}

Anthony

Anthony

Anthony

Anthony

Anthony

Anthony

Anthony

Anthony

Spinlock Performance

Fast when…
- many CPUs
- locks held a short time
- advantage: avoid context switch

Slow when…
- one CPU
- locks held a long time
- disadvantage: spinning is wasteful

spinspin spin spin spin

CPU Scheduler is Ignorant

A B

0 20 40 60 80 100 120 140 160

C D A B C D

lock unlock lock

CPU scheduler may run B, C, D instead of A
even though B, C, D are waiting for A

Ticket Lock with yield

typedef struct __lock_t {
int ticket;
int turn;

}

void lock_init(lock_t *lock) {
lock->ticket = 0;
lock->turn = 0;

}

void acquire(lock_t *lock) {
int myturn = FAA(&lock->ticket);
while (lock->turn != myturn)

yield();
}

void release(lock_t *lock) {
FAA(&lock->turn);

}

Anthony

Anthony

Anthony

spinspin spin spin spin

A B

0 20 40 60 80 100 120 140 160

C D A B C D

lock unlock lock

A

0 20 40 60 80 100 120 140 160

A B

lock unlock lock

no yield:

yield:

Yield Instead of Spin

Anthony

Anthony

Anthony

Anthony

Anthony

Anthony

Anthony

QUIZ 16 https://tinyurl.com/cs537-sp23-quiz15

a = 1
int b = xchg(&a, 2)
int c = CAS(&b, 2, 3)
int d = CAS(&b, 1, 3)

Final values

Assuming round-robin scheduling,
10ms time slice. Processes A, B, C,
D, E, F, G, H in the system

Anthony

Anthony

Anthony

Anthony

Anthony

Anthony

Anthony

Anthony

Anthony

Anthony

Anthony

Anthony

Anthony

Anthony

Anthony

Anthony

Anthony

Anthony

Anthony

Anthony

Anthony

Anthony

Anthony

Anthony

Anthony

Anthony

Anthony

Spinlock Performance

Waste of CPU cycles?

Without yield: O(threads * time_slice)
With yield: O(threads * context_switch)

Even with yield, spinning is slow with high thread contention

Next improvement: Block and put thread on waiting queue instead of spinning

Anthony

Lock Implementation: Block when Waiting

Remove waiting threads from scheduler runnable queue
(e.g., park() and unpark(threadID))

Scheduler runs any thread that is runnable

Anthony

Anthony

RUNNABLE:

RUNNING:

WAITING:

A, B, C, D

0 20 40 60 80 100 120 140 160

A B D contend for lock, C is not contending A has 60 ms worth of work
20ms is the timeslice

Anthony

Anthony

Anthony

Anthony

Anthony

Anthony

Anthony

Anthony

Lock Implementation: Block when Waiting

typedef struct {

bool lock = false;
bool guard = false;
queue_t q;

} LockT;

void acquire(LockT *l) {
while (XCHG(&l->guard, true));
if (l->lock) {

qadd(l->q, tid);
l->guard = false;
park(); // blocked

} else {
l->lock = true;
l->guard = false;

}
}

void release(LockT *l) {
while (XCHG(&l->guard, true));
if (qempty(l->q)) l->lock=false;
else unpark(qremove(l->q));
l->guard = false;

}

Anthony

Anthony

Anthony

Anthony

Anthony

Anthony

Anthony

Lock Implementation: Block when Waiting
void acquire(LockT *l) {

while (XCHG(&l->guard, true));
if (l->lock) {

qadd(l->q, tid);
l->guard = false;
park(); // blocked

} else {
l->lock = true;
l->guard = false;

}
}

void release(LockT *l) {
while (XCHG(&l->guard, true));
if (qempty(l->q)) l->lock=false;
else unpark(qremove(l->q));
l->guard = false;

}

(a) Why is guard used?

(b) Why okay to spin on guard?

(c) In release(), why not set lock=false when
unpark?

(d) Is there a race condition?

Anthony

Anthony

Anthony

Anthony

Anthony

Anthony

Anthony

Race Condition

Thread 1
if (l->lock) {

qadd(l->q, tid);
l->guard = false;

park(); // block

(in unlock)(in lock) Thread 2

while (TAS(&l->guard, true));
if (qempty(l->q)) // false!!
else unpark(qremove(l->q));
l->guard = false;

Anthony

Anthony

Anthony

Anthony

Block when Waiting: FINAL correct LOCK
typedef struct {

bool lock = false;
bool guard = false;
queue_t q;

} LockT;

void acquire(LockT *l) {
while (TAS(&l->guard, true));
if (l->lock) {

qadd(l->q, tid);
setpark(); // notify of plan
l->guard = false;
park(); // unless unpark()

} else {
l->lock = true;
l->guard = false;

}
}
void release(LockT *l) {

while (TAS(&l->guard, true));
if (qempty(l->q)) l->lock=false;
else unpark(qremove(l->q));
l->guard = false;

}

setpark() fixes race condition

Anthony

Anthony

Anthony

Spin-Waiting vs Blocking

Each approach is better under different circumstances
Uniprocessor

Waiting process is scheduled à Process holding lock isn’t
Waiting process should always relinquish processor
Associate queue of waiters with each lock (as in previous implementation)

Multiprocessor
Waiting process is scheduled à Process holding lock might be
Spin or block depends on how long, t, before lock is released

Lock released quickly à Spin-wait
Lock released slowly à Block
Quick and slow are relative to context-switch cost, C

When to Spin-Wait? When to Block?

If know how long, t, before lock released, can determine optimal behavior
How much CPU time is wasted when spin-waiting?

How much wasted when blocking?

What is the best action when t<C?

When t>C?

Problem:
Requires knowledge of future; too much overhead to do any special prediction

t

Two-Phase Waiting

Theory: Bound worst-case performance; ratio of actual/optimal
When does worst-possible performance occur?

Algorithm: Spin-wait for C then block à Factor of 2 of optimal
Two cases:

t < C: optimal spin-waits for t; we spin-wait t too
t > C: optimal blocks immediately (cost of C);

we pay spin C then block (cost of 2 C);
2C / C à 2-competitive algorithm

Spin for very long time t >> C
Ratio: t/C (unbounded)

NEXT STEPS

Midterm on Thursday 3/2

No class on Thursday
Next Tuesday: Condition Variables

