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ADMINISTRIVIA

- Access slides and notes at ~arebello instead of ~shivaram

https://pages.cs.wisc.edu/~shivaram/cs537-sp23/

https://pages.cs.wisc.edu/~arebello/cs537-sp23/

- Piazza and TAs for everything else



AGENDA / LEARNING OUTCOMES

Concurrency
What are some of the challenges in concurrent execution?
How do we design locks to address this?



RECAP



Motivation for Concurrency



TIMELINE VIEW

Thread 1 Thread 2
mov 0x123, %eax

mov 0x123, %eax
add %0x2, %eax

mov %eax, 0x123

add %0x1, %eax

mov %eax, 0x123
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What do we want?

Want 3 instructions to execute as an uninterruptable group 
That is, we want them to be atomic

mov 0x123, %eax
add %0x1, %eax
mov %eax, 0x123

More general: Need mutual exclusion for critical sections
if thread A is in critical section C, thread B isn’t
(okay if other threads do unrelated work)
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Lock Implementation Goals

Correctness 
– Mutual exclusion

Only one thread in critical section at a time
– Progress (deadlock-free)

If several simultaneous requests, must allow one to proceed
– Bounded (starvation-free)

Must eventually allow each waiting thread to enter

Fairness: Each thread waits for same amount of time
Performance: CPU is not used unnecessarily
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Implementing Synchronization

Atomic operation: No other instructions can be interleaved

Approaches
- Disable interrupts
- Locks using loads/stores
- Using special hardware instructions



Implementing Locks: W/ Interrupts

Turn off interrupts for critical sections
- Prevent dispatcher from running another thread
- Code between interrupts executes atomically

Disadvantages?
Only works on uniprocessors
Process can keep control of CPU for arbitrary length
Cannot perform other necessary work

void acquire(lockT *l) {
disableInterrupts();

}

void release(lockT *l) {
enableInterrupts();

}
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Implementing LOCKS: w/ Load+Store

Code uses a single shared lock variable

void release(Boolean *lock) {
*lock = false;

}

// shared variable
boolean lock = false;
void acquire(Boolean *lock) {

while (*lock) /* wait */ ;
*lock = true;

}

Does this work? What situation can cause this to not work?
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Race Condition with LOAD and STORE

*lock == 0 initially

Thread 1 Thread 2    
while(*lock == 1)

while(*lock == 1)
*lock = 1

*lock = 1

Both threads grab lock!
Problem: Testing lock and setting lock are not atomic
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xchg: atomic exchange or test-and-set

// xchg(int *addr, int newval)                  
// return what was pointed to by addr              
// at the same time, store newval into addr  
int xchg(int *addr, int newval) {
int old = *addr;
*addr = newval;
return old;

}

How do we solve this ? Get help from the hardware!

movl 4(%esp), %edx
movl 8(%esp), %eax
xchgl (%edx), %eax
ret
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LOCK Implementation with XCHG

typedef struct __lock_t { 
int flag; 

} lock_t; 

void init(lock_t *lock) { 
lock->flag = ??; 

} 

void acquire(lock_t *lock) { 
????; 
// spin-wait (do nothing) 

} 

void release(lock_t *lock) { 
lock->flag = ??; 

} 

int xchg(int *addr, int newval) 

Anthony

Anthony

Anthony

Anthony

Anthony

Anthony

Anthony

Anthony

Anthony

Anthony

Anthony

Anthony

Anthony

Anthony

Anthony

Anthony

Anthony

Anthony

Anthony



Other Atomic HW Instructions

int CompareAndSwap(int *addr, int expected, int new) {
int actual = *addr;
if (actual == expected) 
*addr = new;

return actual;
}                                                      

void acquire(lock_t *lock) { 
while(CompareAndSwap(&lock->flag,  ,  ) ==  ) ; 
// spin-wait (do nothing) 

}

Anthony

Anthony

Anthony

Anthony

Anthony

Anthony

Anthony

Anthony

Anthony

Anthony

Anthony



spin spin spin spin

Basic Spinlocks are Unfair

A B

0 20 40 60 80 100 120 140 160

A B A B A B

lock
lockunlock lockunlock lockunlock lockunlock

Scheduler is unaware of locks/unlocks!
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Fairness: Ticket Locks

Idea: reserve each thread’s turn to use a lock.
Each thread spins until their turn.
Use new atomic primitive, fetch-and-add

Acquire: Grab ticket;  Spin while not thread’s ticket != turn
Release: Advance to next turn

int FetchAndAdd(int *ptr) {
int old = *ptr;
*ptr = old + 1;
return old;

}
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0
1
2
3
4
5
6
7

A lock(): 
B lock():
C lock():

A unlock(): 

A lock():
B unlock(): 

C unlock(): 
A unlock(): 

Ticket Lock ExampLE

Ticket Turn
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Ticket Lock Implementation

typedef struct __lock_t {
int ticket;
int turn;

}

void lock_init(lock_t *lock) {
lock->ticket = 0;
lock->turn = 0;

}

void acquire(lock_t *lock) {
int myturn = FAA(&lock->ticket);
// spin
while (lock->turn != myturn);

}

void release(lock_t *lock) {
FAA(&lock->turn);

}
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Spinlock Performance

Fast when…
- many CPUs
- locks held a short time
- advantage: avoid context switch

Slow when…
- one CPU
- locks held a long time
- disadvantage: spinning is wasteful



spinspin spin spin spin

CPU Scheduler is Ignorant

A B

0 20 40 60 80 100 120 140 160

C D A B C D

lock unlock lock

CPU scheduler may run B, C, D instead of A
even though B, C, D are waiting for A



Ticket Lock with yield

typedef struct __lock_t {
int ticket;
int turn;

}

void lock_init(lock_t *lock) {
lock->ticket = 0;
lock->turn = 0;

}

void acquire(lock_t *lock) {
int myturn = FAA(&lock->ticket);
while (lock->turn != myturn)

yield();
}

void release(lock_t *lock) {
FAA(&lock->turn);

}
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spinspin spin spin spin

A B

0 20 40 60 80 100 120 140 160

C D A B C D

lock unlock lock

A

0 20 40 60 80 100 120 140 160

A B

lock unlock lock

no yield:

yield:

Yield Instead of Spin
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QUIZ 16 https://tinyurl.com/cs537-sp23-quiz15

a = 1
int b = xchg(&a, 2)
int c = CAS(&b, 2, 3)
int d = CAS(&b, 1, 3)

Final values

Assuming round-robin scheduling, 
10ms time slice. Processes A, B, C, 
D, E, F, G, H in the system
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Spinlock Performance

Waste of CPU cycles?

Without yield: O(threads * time_slice)
With yield: O(threads * context_switch) 

Even with yield, spinning is slow with high thread contention

Next improvement: Block and put thread on waiting queue instead of spinning 
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Lock Implementation: Block when Waiting

Remove waiting threads from scheduler runnable queue
(e.g., park() and unpark(threadID))

Scheduler runs any thread that is runnable
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RUNNABLE: 

RUNNING: 

WAITING: 

A, B, C, D

0 20 40 60 80 100 120 140 160

A B D contend for lock, C is not contending A has 60 ms worth of work
20ms is the timeslice
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Lock Implementation: Block when Waiting

typedef struct {

bool lock = false;
bool guard = false;
queue_t q;

} LockT;

void acquire(LockT *l) {
while (XCHG(&l->guard, true));
if (l->lock) {

qadd(l->q, tid);
l->guard = false;
park();     // blocked 

} else {
l->lock = true;
l->guard = false;

}
}

void release(LockT *l) {
while (XCHG(&l->guard, true));
if (qempty(l->q)) l->lock=false;
else unpark(qremove(l->q));
l->guard = false;

}
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Lock Implementation: Block when Waiting
void acquire(LockT *l) {

while (XCHG(&l->guard, true));
if (l->lock) {

qadd(l->q, tid);
l->guard = false;
park();     // blocked 

} else {
l->lock = true;
l->guard = false;

}
}

void release(LockT *l) {
while (XCHG(&l->guard, true));
if (qempty(l->q)) l->lock=false;
else unpark(qremove(l->q));
l->guard = false;

}

(a) Why is guard used? 

(b) Why okay to spin on guard?

(c) In release(), why not set lock=false when 
unpark?

(d) Is there a race condition?
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Race Condition

Thread 1
if (l->lock) {

qadd(l->q, tid);
l->guard = false;

park();    // block

(in unlock)(in lock) Thread 2

while (TAS(&l->guard, true));
if (qempty(l->q)) // false!!
else unpark(qremove(l->q)); 
l->guard = false;
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Block when Waiting: FINAL correct LOCK
typedef struct {

bool lock = false;
bool guard = false;
queue_t q;

} LockT;

void acquire(LockT *l) {
while (TAS(&l->guard, true));
if (l->lock) {

qadd(l->q, tid);
setpark(); // notify of plan
l->guard = false;
park(); // unless unpark() 

} else {
l->lock = true;
l->guard = false;

}
}
void release(LockT *l) {

while (TAS(&l->guard, true));
if (qempty(l->q)) l->lock=false;
else unpark(qremove(l->q)); 
l->guard = false;

}

setpark() fixes race condition
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Spin-Waiting vs Blocking

Each approach is better under different circumstances
Uniprocessor

Waiting process is scheduled à Process holding lock isn’t
Waiting process should always relinquish processor
Associate queue of waiters with each lock (as in previous implementation)

Multiprocessor
Waiting process is scheduled à Process holding lock might be
Spin or block depends on how long, t,  before lock is released

Lock released quickly à Spin-wait
Lock released slowly à Block
Quick and slow are relative to context-switch cost, C



When to Spin-Wait?  When to Block?

If know how long, t, before lock released, can determine optimal behavior
How much CPU time is wasted when spin-waiting?

How much wasted when blocking?

What is the best action when t<C?

When t>C?

Problem: 
Requires knowledge of future; too much overhead to do any special prediction

t



Two-Phase Waiting

Theory: Bound worst-case performance; ratio of actual/optimal
When does worst-possible performance occur?

Algorithm: Spin-wait for C then block à Factor of 2 of optimal
Two cases:

t < C: optimal spin-waits for t; we spin-wait t too
t > C: optimal blocks immediately (cost of C);

we pay spin C then block (cost of 2 C);
2C / C à 2-competitive algorithm

Spin for very long time t >> C
Ratio: t/C (unbounded)



NEXT STEPS

Midterm on Thursday 3/2

No class on Thursday
Next Tuesday: Condition Variables


