
Virtualization: CPU

Shivaram Venkataraman
CS 537, Spring 2023

ADMINISTRIVIA

- Project 1 is out! Due Feb 1
- Signup for Piazza https://piazza.com/wisc/spring2023/cs537
- Lecture notes at pages.cs.wisc.edu/~shivaram/cs537-sp23/
- Drop? Waitlist? Email enrollment@cs.wisc.edu and cc me

https://piazza.com/wisc/spring2023/cs537
mailto:enrollment@cs.wisc.edu

AGENDA / OUTCOMES

Abstraction
What is a Process ? What is its lifecycle ?

Mechanism
How does process interact with the OS ?
How does the OS switch between processes ?

ABSTRACTION: PROCESS

PROGRAM VS PROCESS

#include <stdio.h>
#include <stdlib.h>
#include "common.h"

int main(int argc, char *argv[]) {
char *str = argv[1];

while (1) {
printf("%s\n", str);
Spin(1);

}
return 0;

}

Program

Process

WHAT IS A PROCESS?

pushq %rbp
movq %rsp, %rbp
subq $32, %rsp
movl $0, -4(%rbp)
movl %edi, -8(%rbp)
movq %rsi, -16(%rbp)
cmpl $2, -8(%rbp)
je LBB0_2

Instruction
Pointer Registers

Memory addrs

Stream of executing instructions and their “context”

File descriptors

PROCESS CREATION

code
static data
Program

CPU Memory

PROCESS CREATION

code
static data
Program

CPU Memory

code, static data
heap

stack

Can run multiple
instances of same

program

Each program has its
own stack, heap etc.

PROCESS VS THREAD

Threads: “Lightweight process”

Execution streams that share an address space
Can directly read / write memory

Can have multiple threads within a single process

SHARING THE CPU

SHARING CPU

code, static data
heap

stack

code, static data
heap

stack

code, static data
heap

stack

CPU

TIME SHARING

code, static data
heap

stack

code, static data
heap

stack

code, static data
heap

stack

CPU

TIME SHARING

code, static data
heap

stack

code, static data
heap

stack

code, static data
heap

stack

CPU

WHAT TO DO WITH PROCESSES
THAT ARE NOT RUNNING ?

OS Scheduler
Save context when process is paused
Restore context on resumption

STATE TRANSITIONS

Running Ready

Blocked

Descheduled

Scheduled

I/O: initiate I/O: done

ASIDE: OSTEP HOMEWORKS!

- Optional homeworks corresponding to each chapter in book
- Little simulators to help you understand
- Can generate problems and solutions!

http://pages.cs.wisc.edu/~remzi/OSTEP/Homework/homework.html

See https://github.com/shivaram/cs537-sp23-discussion for code snippets

https://github.com/shivaram/cs537-sp23-discussion

PROCESS HW

Run ./process_run.py –l 2:100,2:0

QUIZ 1

≥ ./process-run.py -l 3:50,3:40
Process 0
io
io
cpu

Process 1
cpu
io
io

Time PID: 0 PID: 1
1 RUN:io READY
2 WAITING RUN:cpu
3 WAITING RUN:io
4 WAITING WAITING
5 WAITING WAITING
6 RUN:io WAITING
7 WAITING WAITING

What happens at time 8?

Each IO takes 5
time units

https://tinyurl.com/cs537-sp23-quiz1

CPU SHARING

Policy goals
Virtualize CPU resource using processes
Reschedule process for fairness? efficiency ?

Mechanism goals
Efficiency: Sharing should not add overhead
Control: OS should be able to intervene when required

EFFICIENT EXECUTION

Simple answer !?: Direct Execution
Allow user process to run directly
Create process and transfer control to main()

Challenges
What if the process wants to do something restricted ? Access disk ?
What if the process runs forever ? Buggy ? Malicious ?

Solution: Limited Direct Execution (LDE)

PROBLEM 1: RESTRICTED OPS

How can we ensure user process can’t harm others?

Solution: privilege levels supported by hardware (bit of status)
User processes run in user mode (restricted mode)
OS runs in kernel mode (not restricted)

How can process access devices?
System calls (function call implemented by OS)

SYSTEM CALL

SYSTEM CALL

RAM

Process P

sy
s_
re
ad

P wants to call read()

SYSTEM CALL

RAM

Process P

sy
s_
re
ad

P wants to call read() but no way to call it directly

P can only see its own memory because of user mode
(other areas, including kernel, are hidden)

sy
s_
re
ad

SYSTEM CALL

RAM

Process P

sy
s_
re
ad

movl $6, %eax; int $64

sy
s_
re
ad

SYSTEM CALL

RAM

Process P

sy
s_
re
ad

movl $6, %eax; int $64

sy
s_
re
ad

SYSTEM CALL

RAM

Process P

sy
s_
re
ad

movl $6, %eax; int $64Syscall table
index

Trap table
index

SYSTEM CALL

RAM

Process P

sy
s_
re
ad

movl $6, %eax; int $64

sy
sc
al
l

Follow entries to correct system call code

SYSTEM CALL

RAM

Process P

sy
s_
re
ad

sy
sc
al
l

buf

Kernel can access user memory to fill in user buffer
return-from-trap at end to return to Process P

SYSCALL SUMMMARY

Separate user-mode from kernel mode for security

Syscall: call kernel mode functions
Transfer from user-mode to kernel-mode (trap)
Return from kernel-mode to user-mode (return-from-trap)

QUIZ 2

To call SYS_read the instructions we used were

movl $6, %eax
int $64

To call SYS_exec what will be the instructions?

movl ____ %eax
int ____

https://tinyurl.com/cs537-sp23-quiz2

PROBLEM2: HOW TO TAKE CPU AWAY

Policy
To decide which process to schedule when
Decision-maker to optimize some workload performance metric

Mechanism
To switch between processes
Low-level code that implements the decision

Separation of policy and mechanism: Recurring theme in OS

DISPATCH MECHANISM

OS runs dispatch loop

while (1) {
run process A for some time-slice
stop process A and save its context
load context of another process B

}

Question 1: How does dispatcher gain control?
Question 2: What must be saved and restored?

HOW DOES DISPATCHER GET CONTROL?

Option 1: Cooperative Multi-tasking: Trust process to relinquish CPU through traps

– Examples: System call, page fault (access page not in main memory), or error
(illegal instruction or divide by zero)

– Provide special yield() system call

P1

yield() call

OS

P2

yield() return

PROBLEMS WITH COOPERATIVE ?

Disadvantages: Processes can misbehave

By avoiding all traps and performing no I/O, can take over entire machine
Only solution: Reboot!

Not performed in modern operating systems

TIMER-BASED INTERRUPTS

Option 2: Timer-based Multi-tasking

Guarantee OS can obtain control periodically

Enter OS by enabling periodic alarm clock
Hardware generates timer interrupt (CPU or separate chip) Example: Every 10ms
User must not be able to mask timer interrupt

Process A
Operating System Hardware Program

timer interrupt
save regs(A) to k-stack(A)
move to kernel mode
jump to trap handler

Process A
Operating System Hardware Program

timer interrupt
save regs(A) to k-stack(A)
move to kernel mode
jump to trap handler

Operating System Hardware Program
Process A

Handle the trap
Call switch() routine
save kernel regs(A) to proc-struct(A)
restore kernel regs(B) from proc-struct(B)
switch to k-stack(B)
return-from-trap (into B)

Operating System Hardware Program

Handle the trap
Call switch() routine
save kernel regs(A) to proc-struct(A)
restore kernel regs(B) from proc-struct(B)
switch to k-stack(B)
return-from-trap (into B)

Process A

timer interrupt
save regs(A) to k-stack(A)
move to kernel mode
jump to trap handler

restore regs(B) from k-stack(B)
move to user mode
jump to B’s IP

Operating System Hardware Program

Handle the trap
Call switch() routine
save kernel regs(A) to proc-struct(A)
restore kernel regs(B) from proc-struct(B)
switch to k-stack(B)
return-from-trap (into B)

Process A

Process B

timer interrupt
save regs(A) to k-stack(A)
move to kernel mode
jump to trap handler

restore regs(B) from k-stack(B)
move to user mode
jump to B’s IP

SUMMARY

Process: Abstraction to virtualize CPU
Use time-sharing in OS to switch between processes

Key aspects
Use system calls to run access devices etc. from user mode
Context-switch using interrupts for multi-tasking

POLICY ?
Next CLASS!

Running Ready

Blocked

Descheduled

Scheduled

I/O: initiate I/O: done

NEXT STEPS

Project 1: Due Feb 1 (Wednesday) at 10pm
Project 2: Out on Feb 1

Waitlist? Email enrollment@cs.wisc and cc me (will finalize by Monday)

mailto:enrollment@cs.wisc

