
NFS, SUMMARY

Shivaram Venkataraman
CS 537, Spring 2023

ADMINISTRIVIA

Project 7 grades
Project 8 deadline

Quiz grades

Midterm 3!

AGENDA / LEARNING OUTCOMES

How to design a distributed file system that can survive partial failures?

What are consistency properties for such designs?

RECAP

Distributed File Systems

Local FS: processes on same machine access shared files

Network FS: processes on different machines access shared files in same way

Goals
 Transparent access
 Fast + simple crash recovery
 Reasonable performance?

NFS Architecture

File
Server

Client

Client

Client

Client

RPC

RPC

RPC

RPC
Local FS

Strategy 3: file handles

fh = open(char *path);
pread(fh, buf, size, offset);
pwrite(fh, buf, size, offset);

File Handle = <volume ID, inode #, generation #>

Opaque to client (client should not interpret internals)

pwrite VS APPEND

AAAA
AAAA

file

pwrite ABBA
AAAA

file

pwrite ABBA
AAAA

file

pwrite ABBA
AAAA

file

pwrite(file, “BB”, 2, 2);

append(file, “BB”);

Cache Consistency

NFS can cache data in three places:
 - server memory
 - client disk
 - client memory

How to make sure all versions are in sync?

Distributed Cache

Local FS

Client 1 Server

NFS
cache: Acache:

Client 2

NFS
cache:

Cache

Local FS

Client 1 Server

NFS
cache: Acache: B

Client 2

NFS
cache: A

write!

“Update Visibility” problem: server doesn’t have latest version

What happens if Client 2 (or any other client) reads data?

Cache

Local FS

Client 1 Server

NFS
cache: Bcache: B

Client 2

NFS
cache: A

flush

“Stale Cache” problem: client 2 doesn’t have latest version

What happens if Client 2 reads data?

Problem 1: Update Visibility

When client buffers a write, how can server (and other clients) see update?
 Client flushes cache entry to server

When should client perform flush?
 NFS solution: flush on fd close

Local FS

Client 1 Server

NFS
cache: Acache: B

write!

Problem 2: Stale Cache

Problem: Client 2 has stale copy of data; how can it get the latest?

NFS solution:
– Clients recheck if cached copy is current before using data

Local FS

Server

cache: B

Client 2

NFS
cache: A

Stale Cache Solution

Client cache records time when data block was fetched (t1)
Before using data block, client does a STAT request to server

 - get’s last modified timestamp for this file (t2) (not block…)
 - compare to cache timestamp
 - refetch data block if changed since timestamp (t2 > t1)

Local FS

Server

cache: B

Client 2

NFS
cache: A t1t2

Measure then Build

NFS developers found stat accounted for 90% of server requests

Why?

Because clients frequently recheck cache

Reducing Stat Calls

Solution: cache results of stat calls
Partial Solution:
 Make stat cache entries expire after a given time
 (e.g., 3 seconds) (discard t2 at client 2)

What is the consequence?

Local FS

Server

cache: B

Client 2

NFS
cache: A

Never see updates on server!

Attribute
Cache

Write Buffers

Local FS

Client Server

NFS

write

write bufferwrite buffer

Server acknowledges write before write is pushed to disk;
What happens if server crashes?

client:

 write A to 0
 write B to 1
 write C to 2

Server Write Buffer Lost

server mem: A B C

server disk:

server acknowledges write before write is pushed to disk

Server Write Buffer Lost

server mem: Z

server disk: X B Z

Client:

 write A to 0

 write B to 1

 write C to 2

 write X to 0

 write Y to 1

 write Z to 2

Problem:
No write failed, but disk state doesn’t match
any point in time

Solutions?

Write Buffers

Local FS

Client Server

NFS

write

write buffer

Don’t use server write buffer. Problem: Slow?

Use persistent write buffer (more expensive)

NFS Summary

NFS handles client and server crashes very well; robust APIs that are:

 - stateless: servers don’t remember clients
 - idempotent: doing things twice never hurts

Caching and write buffering is harder, especially with crashes

Problems:

– Consistency model is odd (client may not see updates until 3s after file closed)
– Scalability limitations as more clients call stat() on server

https://aefis.wisc.edu/FEEDBACK!

1. What was one idea or concept that you learnt in this course that you appreciated the most?

2. What are some future opportunities that you look forward to based on content from 537?

LOOKING FORWARD:
OS/FILESYSTEMS FOR THE CLOUD?

From Mid 2006

Rent virtual computers in the “Cloud”

On-demand machines, spot pricing

Amazon EC2 (2018)

Machine Memory (GB)
Compute Units

(ECU)
Local Storage

(GB)
Cost / hour

t2.nano 0.5 1 0 $0.0058

r5d.24xlarge 244 768 104 96 4x900 NVMe $6.912

x1.32xlarge 2 TB 4 * Xeon E7 3.4 TB (SSD) $13.338

p3.16xlarge 488 GB
8 Nvidia Tesla
V100 GPUs

0 $24.48

Datacenter Evolution

Capacity:
~10000 machines

Bandwidth:
12-24 disks per node

Latency:
256GB RAM cache

Jeff Dean @ Google

DATACENTER OPERATING SYSTEMS

Resource sharing

Data sharing

Programming Abstractions

Debugging

COURSE SUMMARY

OPERATING SYSTEMS: THREE EASY PIECES

Three conceptual pieces

1. Virtualization

2. Concurrency

3. Persistence

VIRTUALIZATION

Make each application believe it has each resource to itself
CPU and Memory

Abstraction: Process API, Address spaces
Mechanism:
 Limited direct execution, CPU scheduling
 Address translation (segmentation, paging, TLB)

Policy: MLFQ, LRU etc.

CONCURRENCY

Events occur simultaneously and may interact with one another
Need to
 Hide concurrency from independent processes
 Manage concurrency with interacting processes

Provide abstractions (locks, semaphores, condition variables etc.)
Correctness: mutual exclusion, ordering
Performance: scaling data structures, fairness
Common Bugs!

PERSISTENCE

Managing devices: key role of OS!
Hard disk drives
 Rotational, Seek, Transfer time
 Disk scheduling: FIFO, SSTF, SCAN
Filesystems API
 File descriptors, Inodes
 Directories
 Hardlinks, softlinks

PERSISTENCE

Very simple FS
 Inodes, Bitmaps, Superblock, Data blocks
FFS
 Placement in groups, Allocation policy
LFS
 Write optimized, Garbage collection

Journaling, FSCK
NFS: Partial failures retry, cache consistency

NEXT COURSES

CS 640: Computer Networks

CS 736: Advanced Operating Systems

CS 739: Advanced Distributed Systems

CS 744: Big Data Systems

ThANK YOU!

