
CPU SCHEDULING

Shivaram Venkataraman
CS 537, Spring 2023

ADMINISTRIVIA

- Project 1 is due tomorrow (Feb 1)
- Still on the waitlist?

- Email shivaram@cs.wisc.edu and enrollment@cs.wisc.edu

- Project 2 out tomorrow

mailto:shivaram@cs.wisc.edu

AGENDA / LEARNING OUTCOMES

Scheduling
How does the OS decide what process to run?
What are some of the metrics to optimize for?

Policies
How to handle interactive and batch processes?
What to do when OS doesn’t have complete information?

RECAP

RECAP: SCHEDULING MECHANISM

Process: Abstraction to virtualize CPU

Role of the OS
Protection: How can we ensure user process can’t harm others?
Sharing: Reschedule processes for fairness, efficiency

RECAP: SYSCALL

Separate user-mode from kernel mode for security
Syscall: call kernel mode functions

RAM

Process P

sy
s_
re
ad

sy
sc
al
l

buf

DISPATCH MECHANISM

OS runs dispatch loop

while (1) {
run process A for some time-slice
stop process A and save its context
load context of another process B

}

Question 1: How does dispatcher gain control?
Question 2: What must be saved and restored?

HOW DOES DISPATCHER GET CONTROL?

Option 1: Cooperative Multi-tasking: Trust process to relinquish CPU through traps
– Examples: System call or error (illegal instruction or divide by zero) etc.
– Provide special yield() system call

P1

yield() call

OS

P2

yield() return

Disadvantages?

TIMER-BASED INTERRUPTS

Option 2: Timer-based Multi-tasking

Guarantee OS can obtain control periodically

Enter OS by enabling periodic alarm clock
Hardware generates timer interrupt (CPU or separate chip)
Example: Every 10ms
User must not be able to mask timer interrupt

timer interrupt
save regs(A) to k-stack(A)
move to kernel mode
jump to trap handler

Operating System Hardware Program
Process A

Handle the trap
Call switch() routine

save kernel regs(A) to proc-struct(A)
restore kernel regs(B) from proc-struct(B)
switch to k-stack(B)

return-from-trap (into B)

Operating System Hardware Program

Handle the trap
Call switch() routine
save kernel regs(A) to proc-struct(A)
restore kernel regs(B) from proc-struct(B)
switch to k-stack(B)
return-from-trap (into B)

Process A

Process B

timer interrupt
save regs(A) to k-stack(A)
move to kernel mode
jump to trap handler

restore regs(B) from k-stack(B)
move to user mode
jump to B’s IP

SUMMARY

Process: Abstraction to virtualize CPU
Use time-sharing in OS to switch between processes

Key aspects
Use system calls to run access devices etc. from user mode
Context-switch using interrupts for multi-tasking

POLICY ?
Running Ready

Blocked

Descheduled

Scheduled

I/O: initiate I/O: done

VOCABULARY

Workload: set of jobs (arrival time, run_time)

Job ~ Current execution of a process
Alternates between CPU and I/O
Moves between ready and blocked queues

Scheduler: Decides which ready job to run
Metric: measurement of scheduling quality

APPROACH

Assumptions

Scheduling
policy

Metric

ASSUMPTIONS

1. Each job runs for the same amount of time
2. All jobs arrive at the same time
3. All jobs only use the CPU (no I/O)
4. Run-time of each job is known

METRIC 1: TURNAROUND TIME

Turnaround time = completion_time - arrival_time
Example:

Process A arrives at time t = 10, finishes t = 30
Process B arrives at time t = 10, finishes t = 50

Turnaround time
A = 20, B = 40
Average = 30

FIFO / FCFS
Job arrival(s) run time (s) turnaround (s)

A ~0 10

B ~0 10

C ~0 10

0 20 40 60 80 100 120
Time

A B C
Average
Turnaround
Time =

ASSUMPTIONS

1. Each job runs for the same amount of time
2. All jobs arrive at the same time
3. All jobs only use the CPU (no I/O)
4. Run-time of each job is known

QUIZ3

Average
Turnaround Time ?

Job Arrival(s) run time (s)

A ~0 100

B ~0 10

C ~0 10

0 20 40 60 80 100 120
Time

A B C
[B,C arrive]

What is one schedule
that could be better?

https://tinyurl.com/cs537-sp23-quiz3

CHALLENGE

Turnaround time suffers when short jobs must wait for long jobs

New scheduler:
SJF (Shortest Job First)
Choose job with smallest run time!

SHORTEST JOB FIRST (SJF)
Job Arrival(s) run time (s) Turnaround (s)

A ~0 100

B ~0 10

C ~0 10

0 20 40 60 80 100 120
Time

B C A

Average
Turnaround
Time

ASSUMPTIONS

1. Each job runs for the same amount of time
2. All jobs arrive at the same time
3. All jobs only use the CPU (no I/O)
4. Run-time of each job is known

Job Arrival(s) run time (s)

A ~0 100

B 10 10

C 10 10

What will be the schedule with SJF?

0 20 40 60 80 100 120
Time

A B C
[B,C arrive]

Job Arrival(s) run time (s)

A ~0 100

B 10 10

C 10 10
Average

Turnaround
Time ?

(100 + 100 + 110)/ 3
= 103.33s

PREEMPTIVE SCHEDULING

Previous schedulers:
FIFO and SJF are non-preemptive
Only schedule new job when previous job voluntarily relinquishes CPU

New scheduler:
Preemptive: Schedule different job by taking CPU away from running job
STCF (Shortest Time-to-Completion First)
Always run job that will complete the quickest

PREMPTIVE SCTF
Job Arrival(s) run time (s)

A ~0 100

B 10 10

C 10 10

0 20 40 60 80 100 120
Time

A B C A
[B,C arrive]

Average
Turnaround

Time

(10 + 20 + 120)/ 3
= 50s

METRIC 2: RESPONSE TIME
Response time = first_run_time - arrival_time

A

0 20 40 60 80

B’s turnaround: 20s

B

[B arrives]

B’s response: 10s

ROUND ROBIN SCHEDULER

0 5 10 15 20 25 30
Time

A B C

0 5 10 15 20 25 30
Time

ABCABCABCABCABC

Key idea: Switch more often to reduce response time

QUIZ4 https://tinyurl.com/cs537-sp23-quiz4

Average Response Time? Average Turnaround Time?

Round Robin every 1s

0 5 10 15 20 25 30
Time

A B C

0 5 10 15 20 25 30
Time

ABCABCABCABCABC

FCFS

QUIZ4: ROUND ROBIN

0 5 10 15 20 25 30
Time

A B C

0 5 10 15 20 25 30
Time

ABCABCABCABCABC

Average Response Time

(0 + 5 + 10)/3 = 5s (0 + 1 + 2)/3 = 1s

Average Turnaround Time

(5 + 10 + 15)/3 = 10s (13 + 14 + 15)/3 = 14s

TRADE-OFFS

Round robin increases turnaround time, decreases response time

Tuning challenges:
What is a good time slice for round robin?
What is the overhead of context switching?

ASSUMPTIONS

1. Each job runs for the same amount of time
2. All jobs arrive at the same time
3. All jobs only use the CPU (no I/O)
4. Run-time of each job is known

NOT IO AWARE

0 20 40 60 80 100 120 140
Time

A A A A A B B B B B

CPU

Disk

Job holds on to CPU while blocked on disk!

I/O AWARE SCHEDULING

0 20 40 60 80 100 120 140
Time

A A A A AB B B B B

CPU

Disk

Treat Job A as separate CPU bursts.
When Job A completes I/O, another Job A is ready

Each CPU burst is
shorter than Job B

With SCTF,
Job A preempts Job B

ASSUMPTIONS

1. Each job runs for the same amount of time
2. All jobs arrive at the same time
3. All jobs only use the CPU (no I/O)
4. Run-time of each job is known

MULTI-LEVEL FEEDBACK QUEUE

MLFQ: GENERAL PURPOSE SCHEDULER

Must support two job types with distinct goals
- “interactive” programs care about response time
- “batch” programs care about turnaround time

Approach:
Multiple levels of round-robin
Each level has higher priority than lower level
Can preempt them

MLFQ EXAMPLE

Q1

Q2

Q3

Q4

Q5

Q6

Q7

Q8

[Low Priority]

[High Priority]

D

C

A B “Multi-level” – Each level is a queue!

Rules for MLFQ

Rule 1: If priority(A) > Priority(B)
A runs

Rule 2: If priority(A) == Priority(B),
A & B run in RR

CHALLENGES

How to set priority?
What do we do when a new process arrives?
Does a process stay in one queue or move between queues?

Approach:
Use past behavior of process to predict future!
Guess how CPU burst (job) will behave based on past CPU bursts

MORE MLFQ RULES

Rule 1: If priority(A) > Priority(B), A runs
Rule 2: If priority(A) == Priority(B), A & B run in RR

Rule 3: Processes start at top priority
Rule 4: If job uses whole slice, demote process
(longer time slices at lower priorities)

ONE LONG JOB

Q2

Q1

Q0

0 50 100 150 20

Q2

Q1

Q0

INTERACTIVE PROCESS JOINS

MLFQ PROBLEMS?

Q2

Q1

Q0

0 50 100 150 20

Q2

Q1

Q0

What is the problem
with this schedule ?

AVOIDING STARVATION

Rule 5: After some time
period S, move all the
jobs in the system
to the topmost queue.

GAMING THE SCHEDULER ?

Q2

Q1

Q0

0 50 100 150 20

Q2

Q1

Q0

Job could trick scheduler by doing I/O
just before time-slice end

GAMING THE SCHEDULER ?

Q2

Q1

Q0

0 50 100 150 20

Q2

Q1

Q0

Job could trick scheduler by doing I/O just
before time-slice end

Rule 4*: Once a job uses up its time
allotment at a given level (regardless of
how many times it has given up the CPU),
its priority is reduced

SUMMARY

Scheduling Policies
Understand workload characteristics like arrival, CPU, I/O
Scope out goals, metrics (turnaround time, response time)

Approach
Trade-offs based on goals, metrics (RR vs. SCTF)
Past behavior is good predictor of future behavior?

NEXT STEPS

Project 1: Due Feb 1 at 11:59pm
Project 2: Out tomorrow

