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Welcome back!



ADMINISTRIVIA

Project 5 grades out, Project 6 (this week)

Project 7 Issues?!?

Midterm 3 conflicts (today!?)
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AGENDA / LEARNING OUTCOMES

How to design a filesystem that performs better for small writes?

How do SSDs differ from hard drives?
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LFS Strategy

File system buffers writes in main memory until “enough” data
– Enough to get good sequential bandwidth from disk (MB)

Write buffered data sequentially to new segment on disk
Never overwrite old info: old copies left behind
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READING IN LFS

1. Read the Checkpoint region
2. Read all imap parts, cache in mem
3. To read a file:

1. Lookup inode location in imap
2. Read inode
3. Read the file block
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FREEUSED

Garbage Collection

USEDUSEDdisk segments: USEDUSED
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compact 2 segments to one

When moving data blocks, copy new inode to point to it
When move inode, update imap to point to it 
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SEGMENT SUMMARY

(N, T) = SegmentSummary[A];

inode = Read(imap[N]);

if (inode[T] == A)
// block D is alive

else
// block D is garbage

Is an inode the latest version?
Check imap to see if this inode is pointed to
Fast!
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CRASH RECOVERY

S1S0disk: S3S2
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Checkpoint Summary

Checkpoint occasionally (e.g., every 30s)

Upon recovery:
- read checkpoint to find most imap pointers and segment tail
- find rest of imap pointers by reading past tail

What if crash during checkpoint?
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Checkpoint Strategy

Have two checkpoint regions
Only overwrite one checkpoint at a time
Use checksum/timestamps to identify newest checkpoint
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LFS VS FFS

Until ... SSDs enter the picture 
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NAND FLASH
Single Level Cell (SLC) = 1 bit per cell 
(faster, more reliable)

Multi Level Cell (MLC) = 2 bits per cell 
(slower, less reliable) 

Triple Level Cell (TLC) = 4 bits per cell
(even more so) 
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SSD STRUCTURE device
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SSD PROPERTIES
Page ~ 4KB, 
Block ~ 128 KB 

or 256 KB

Read

Write

Failures:  Block likely to fail after a certain number of erases 
(~10000 for MLC flash, ~100,000 for SLC flash) 
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SSD OPERATIONS
Read a page: Retrieve contents of entire page (e.g., 4 KB) 

– Cost: 25—75 microseconds 
– Independent of page number, prior request offsets 

Erase a block: Resets each page in the block to all 1s 
– Cost: 1.5 to 4.5 milliseconds 
– Much more expensive than reading!
– Allows each page to be written 

Program (i.e., write) a page: Change selected 1s to 0s 
– Cost is 200 to1400 microseconds 
– Faster than erasing a block, but slower than reading a page 
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FLASH TRANSLATION LAYER
1. Translate reads/writes to logical blocks into reads/erases/programs

2. Reduce write amplification (extra copying needed to deal with block-level erases) 

3.Implement wear leveling (distribute writes equally to all blocks)

Typically implemented in hardware in the SSD, but in software for some SSDs 
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FTL: DIRECT MAPPING

Cons? 
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FTL: LOG-BASED MAPPING
Idea:  Treat the physical blocks like a log 
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FTL: LOG-STRUCTURED ADVANTAGES
Avoids expensive read-modify-write behavior 

Better wear levelling: writes get spread across pages, 
even if there is spatial locality in writes at logical level 

Challenges? Garbage!

-> minimizes write

-onamplifical

-



GARBAGE COLLECTION
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GARBAGE COLLECTION
Steps: 

Read all pages in 
physical block

Write out the alive 
entries to the end of 
the log 

Erase block (freeing it 
for later use)
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OVERHEADS
Garbage collection requires extra read+write traffic 

Overprovisioning makes GC less painful 
– SSD exposes logical space that is smaller than the physical space 

– By keeping extra, “hidden” pages around, the SSD tries to defer GC to a 
background task (thus removing GC from critical path of a write) 

Occasionally shuffle live (i.e., non-garbage) blocks that never get overwritten 
– Enforces wear levelling 
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OVERALL PERFORMANCE



COST?

1TB ~ $150 on average
~15 cents / GB

~1.5 cents / GB



NEXT STEPS

Next class: Distributed Systems!




