
PERSISTENCE: SOLID-STATE DEVICES

Shivaram Venkataraman
CS 537, Spring 2023

ADMINISTRIVIA

Project 5 grades out, Project 6 (this week)

Project 7 Issues?!?

Midterm 3 conflicts (today!?)

AGENDA / LEARNING OUTCOMES

How to design a filesystem that performs better for small writes?

How do SSDs differ from hard drives?

RECAP

LFS Strategy

File system buffers writes in main memory until “enough” data
– Enough to get good sequential bandwidth from disk (MB)

Write buffered data sequentially to new segment on disk
Never overwrite old info: old copies left behind

READING IN LFS

1. Read the Checkpoint region
2. Read all imap parts, cache in mem
3. To read a file:

1. Lookup inode location in imap
2. Read inode
3. Read the file block

FREEUSED

Garbage Collection

USEDUSEDdisk segments: USEDUSED

60% 10% 95% 35% 95%

compact 2 segments to one

When moving data blocks, copy new inode to point to it
When move inode, update imap to point to it

SEGMENT SUMMARY

(N, T) = SegmentSummary[A];

inode = Read(imap[N]);

if (inode[T] == A)
// block D is alive

else
// block D is garbage

Is an inode the latest version?
Check imap to see if this inode is pointed to
Fast!

CRASH RECOVERY

S1S0disk: S3S2

ptrs to
imap piecesmemory:

checkpoint
after last

checkpoint

tail after last
checkpoint

Checkpoint Summary

Checkpoint occasionally (e.g., every 30s)

Upon recovery:
- read checkpoint to find most imap pointers and segment tail
- find rest of imap pointers by reading past tail

What if crash during checkpoint?

Checkpoint Strategy

Have two checkpoint regions
Only overwrite one checkpoint at a time
Use checksum/timestamps to identify newest checkpoint

S1S0disk: S3S2

QUIZ 30 https://tinyurl.com/cs537-sp23-quiz30

LFS VS FFS

Until ... SSDs enter the picture

SSDS

NAND FLASH
Single Level Cell (SLC) = 1 bit per cell
(faster, more reliable)

Multi Level Cell (MLC) = 2 bits per cell
(slower, less reliable)

Triple Level Cell (TLC) = 4 bits per cell
(even more so)

SSD STRUCTURE

SSD PROPERTIES
Page ~ 4KB,
Block ~ 128 KB

or 256 KB

Read

Write

Failures: Block likely to fail after a certain number of erases
(~10000 for MLC flash, ~100,000 for SLC flash)

SSD OPERATIONS
Read a page: Retrieve contents of entire page (e.g., 4 KB)

– Cost: 25—75 microseconds
– Independent of page number, prior request offsets

Erase a block: Resets each page in the block to all 1s
– Cost: 1.5 to 4.5 milliseconds
– Much more expensive than reading!
– Allows each page to be written

Program (i.e., write) a page: Change selected 1s to 0s
– Cost is 200 to1400 microseconds
– Faster than erasing a block, but slower than reading a page

FLASH TRANSLATION LAYER
1. Translate reads/writes to logical blocks into reads/erases/programs

2. Reduce write amplification (extra copying needed to deal with block-level erases)

3.Implement wear leveling (distribute writes equally to all blocks)

Typically implemented in hardware in the SSD, but in software for some SSDs

FTL: DIRECT MAPPING

Cons?

FTL: LOG-BASED MAPPING
Idea: Treat the physical blocks like a log

FTL: LOG-STRUCTURED ADVANTAGES
Avoids expensive read-modify-write behavior

Better wear levelling: writes get spread across pages,
even if there is spatial locality in writes at logical level

Challenges? Garbage!

GARBAGE COLLECTION

GARBAGE COLLECTION
Steps:

Read all pages in
physical block

Write out the alive
entries to the end of
the log

Erase block (freeing it
for later use)

OVERHEADS

Garbage collection requires extra read+write traffic

Overprovisioning makes GC less painful
– SSD exposes logical space that is smaller than the physical space

– By keeping extra, “hidden” pages around, the SSD tries to defer GC to a
background task (thus removing GC from critical path of a write)

Occasionally shuffle live (i.e., non-garbage) blocks that never get overwritten
– Enforces wear levelling

OVERALL PERFORMANCE

COST?

1TB ~ $150 on average
~15 cents / GB

~1.5 cents / GB

NEXT STEPS

Next class: Distributed Systems!

