
MEMORY: PAGING AND TLBS

Shivaram Venkataraman
CS 537, Spring 2023

ADMINISTRIVIA

- Project 2 done!
- Project 3 is out! Start early?

AGENDA / LEARNING OUTCOMES

Memory virtualization
What is paging and how does it work?
What are some of the challenges in implementing paging?

RECAP

MEMORY VIRTUALIZATION

Transparency: Process is unaware of sharing

Protection: Cannot corrupt OS or other process memory

Efficiency: Do not waste memory or slow down processes

Sharing: Enable sharing between cooperating processes

RECAP: WHAT IS IN ADDRESS SPACE?

16KB

15KB

2KB

1KB

0KB

Stack

(free)

Heap

Program Code the code segment:
where instructions live

the heap segment:
contains malloc’d data

dynamic data structures
(it grows downward)

(it grows upward)
the stack segment:

contains local variables
arguments to routines,

return values, etc.

Static: Code and some global variables

Dynamic: Stack and Heap

REVIEW: Segmentation

Divide address space into logical segments

Each segment corresponds to logical entity in address space
(code, stack, heap)

Each segment has separate base + bounds register

How does process designate a particular segment?
– Top bits of logical address select segment
– Low bits of logical address select offset within segment

EXAMPLE: SEGMENTATION

0x0010: movl 0x1100, %edi 1. Fetch instruction at logical addr 0x0010

Physical addr:

2. Exec, load from logical addr 0x1100

Physical addr:
Seg Base Bounds
0 0x4000 0xfff
1 0x5800 0xfff
2 0x6800 0x7ff

%rip: 0x0010

Quiz 8!

Segment Base Bounds R W
0 0x2000 0x6ff 1 0
1 0x0000 0x4ff 1 1
2 0x3000 0xfff 1 1
3 0x0000 0x000 0 0

Translate logical (in hex) to physical

0x0240:

0x1108:

0x265c:

0x3002:

Remember:
1 hex digit à 4 bits

https://tinyurl.com/cs537-sp23-quiz8

HOW DOES THIS LOOK IN x86

Stack Segment (SS): Pointer to the stack
Code Segment (CS): Pointer to the code
Data Segment (DS): Pointer to the data

Extra Segment (ES): Pointer to extra data
F Segment (FS): Pointer to more extra data
G Segment (GS): Pointer to still more extra data

NOTE: HOW DO STACKS GROW ?

Stack goes 16K à 12K, in physical memory is 28K à 24K
Segment base is at 28K

Virtual address 0x3C00 = 15K
à top 2 bits (0x3) segment ref, offset is 0xC00 = 3K

How do we make CPU translate that ?

Negative offset = subtract max segment from offset
= 3K – 4K = -1K

Add to base = 28K – 1K = 27K

16KB

15KB

2KB

1KB

0KB

Stack

(free)

Heap

Program Code the code segment:
where instructions live

the heap segment:
contains malloc’d data

dynamic data structures
(it grows downward)

(it grows upward)
the stack segment:

contains local variables
arguments to routines,

return values, etc.

Advantages of Segmentation

Stack and heap can grow independently
• Heap: If no data on free list, dynamic memory allocator requests more from OS

(e.g., UNIX: malloc calls sbrk())
• Stack: OS recognizes reference outside legal segment, extends stack implicitly

Different protection for different segments
• Enables sharing of selected segments
• Read-only status for code

Supports dynamic relocation of each segment

Disadvantages of Segmentation

Each segment must be allocated contiguously

May not have sufficient physical memory for large segments?

External Fragmentation

pAGING

Paging

Goal: Eliminate requirement that address space is contiguous
Eliminate external fragmentation
Grow segments as needed

Idea:
Divide address spaces and physical
memory into fixed-sized pages

Size: 2n, Example: 4KB

Process 1 Process 2

Logical View

Ph
ys

ic
al

 V
ie

w

Process 3

Translation of Page Addresses
How to translate logical address to physical address?

– High-order bits of address designate page number
– Low-order bits of address designate offset within page

page number

frame number

page offset

page offset

Logical address

Physical address

32 bits

translate

20 bits 12 bits

No addition needed; just append bits correctly!

Address Format

Page Size Low Bits (offset)

16 bytes
1 KB
1 MB

512 bytes
4 KB

Given known page size, how many bits are needed in address to specify offset in page?

Address Format

Page Size Low Bits(offset) Virt Addr
Total Bits

High Bits(vpn)

16 bytes 4 10
1 KB 10 20
1 MB 20 32

512 bytes 9 16
4 KB 12 32

Given number of bits in virtual address and bits for offset,
how many bits for virtual page number?

Address Format

Page Size Low Bits (offset) Virt Addr Bits High Bits (vpn)

16 bytes 4 10 6

Virt Pages

1 KB 10 20 10
1 MB 20 32 12

512 bytes 9 16 7
4 KB 12 32 20

Given number of bits for vpn, how many virtual pages can there be in an address space?

VirtUALà Physical PAGE Mapping

How should OS translate VPN to PPN?

0 1 0 1 0 1

VPN offset

1 1 0 1 0 11 0

PPN offset

Addr Mapper

Number of bits in
virtual address

need not equal

number of bits in
physical address

PAGETABLES

What is a good data structure ?

Simple solution: Linear page table aka array

VPN
0

2^n

PER-PROCESS PAGETABLE

Virt Mem

Phys Mem

P2 P3P1

FILL IN PAGETABLE

Virt Mem

Phys Mem

P2 P3P1

0 1 2 3 4 5 6 7 8 9 10 11

Page Tables:

P1 P2 P3

QUIZ 9

Name of approach

Candidates: Segmentation, Static Relocation, Base, Base+Bounds, Time Sharing

Description

1. one process uses RAM at a time

2. rewrite code and addresses before running
3. add per-process starting location to virt addr

to obtain phys addr
4. dynamic approach that verifies address is in

valid range

5. several base+bound pairs per process

https://tinyurl.com/cs537-sp23-quiz9

QUIZ9: HOW BIG IS A PAGETABLE?

Consider a 32-bit address space with 4 KB pages. Assume each PTE is 4 bytes

How many bits do we need to represent the offset within a page?

How many virtual pages will we have in this case?

What will be the overall size of the page table?

WHERE ARE PAGETABLES STORED?
Implication: Store each page table in memory

Hardware finds page table base with register (e.g., CR3 on x86)

What happens on a context-switch?

Change contents of page table base register to newly scheduled process

Save old page table base register in PCB of descheduled process

Other Pagetable info

What other info is in pagetable entries besides translation?
– valid bit
– protection bits
– present bit (needed later)
– reference bit (needed later)
– dirty bit (needed later)

Pagetable entries are just bits stored in memory
– Agreement between HW and OS about interpretation

Memory Accesses with Paging

0x0010: movl 0x1100, %edi

Assume PT is at phys addr 0x5000
Assume PTE’s are 4 bytes
Assume 4KB pages
How many bits for offset? 12

Simplified view
of page table

2
0
80
99

Fetch instruction at logical addr 0x0010

Access page table to get ppn for vpn 0

Mem ref 1:

Learn vpn 0 is at ppn ___

Fetch instruction at ______ (Mem ref 2)

14 bit addresses

Memory Accesses with Paging

0x0010: movl 0x1100, %edi

Assume PT is at phys addr 0x5000
Assume PTE’s are 4 bytes
Assume 4KB pages
How many bits for offset? 12

Simplified view
of page table

2
0
80
99

Exec, load from logical addr 0x1100

Access page table to get ppn for vpn 1

Mem ref 3:

Learn vpn 1 is at ppn ___

Movl from _____ into reg (Mem ref 4)

14 bit addresses

Memory Accesses with Paging

0x0010: movl 0x1100, %edi

Assume PT is at phys addr 0x5000
Assume PTE’s are 4 bytes
Assume 4KB pages
How many bits for offset? 12

Simplified view
of page table

2
0
80
99

Fetch instruction at logical addr 0x0010

Access page table to get ppn for vpn 0

Mem ref 1: ___0x5000___

Learn vpn 0 is at ppn 2

Fetch instruction at __0x2010__ (Mem ref 2)

Exec, load from logical addr 0x1100

Access page table to get ppn for vpn 1

Mem ref 3: ___0x5004___

Learn vpn 1 is at ppn 0

Movl from __0x0100__ into reg (Mem ref 4)

14 bit addresses

PROS/CONS of Paging

No external fragmentation
Any page can be placed in any frame in
physical memory

Fast to allocate and free
– Alloc: No searching for suitable free

space
– Free: Doesn’t have to coalesce with

adjacent free space

Internal fragmentation
– Page size may not match process needs
– Wasted memory grows with larger pages

Additional memory reference to page table à
– Page table must be stored in memory
– MMU stores only base address of page

table

Storage for page tables may be substantial
– Requires PTE for all pages in address

space
– Entry needed even if page not allocated ?

SUMMARY: PAGE TRANSLATION STEPS

For each mem reference:

1. extract VPN (virt page num) from VA (virt addr)
2. calculate addr of PTE (page table entry)
3. read PTE from memory
4. extract PFN (page frame num)
5. build PA (phys addr)
6. read contents of PA from memory into register

Which steps are expensive?

Example: Array Iterator

int sum = 0;
for (i=0; i<N; i++){

sum += a[i];
}

load 0x3000

load 0x3004

load 0x3008

load 0x300C

What virtual addresses?

load 0x100C
load 0x7000
load 0x100C
load 0x7004
load 0x100C
load 0x7008
load 0x100C
load 0x700C

What physical addresses?

Assume ‘a’ starts at 0x3000
Ignore instruction fetches
and access to ‘i’

Strategy: Cache Page Translations

CPU RAM

memory interconnect

PT
Translation Cache

TLB: TRANSLATION LOOKASIDE BUFFER

TLB Organization

A B C D E L M N O P

Fully associative

Tag (virtual page number) Physical page number (page table entry)

TLB Entry

Any given translation can be anywhere in the TLB
Hardware will search the entire TLB in parallel

Array Iterator (w/ TLB)

int sum = 0;
for (i = 0; i < 2048; i++){

sum += a[i];
}

Assume following virtual address stream:
load 0x1000

load 0x1004

load 0x1008

load 0x100C
…

What will TLB behavior look like?

Assume ‘a’ starts at 0x1000
Ignore instruction fetches
and access to ‘i’

P1

P2

P2

P1

PT

P1

16 KB

20 KB

24 KB

8 KB

12 KB

4 KB

0 KB
PT

P1 pagetable
1 5 4 …

P2
28 KB

TLB Accesses: SEQUENTIAL Example

0 1 2 3

CPU’s TLB

PTBR

Valid VPN PPN

Virt

load 0x1000
load 0x1004
load 0x1008
load 0x100c
…
load 0x2000
load 0x2004

Virt Phys

P1

P2

P2

P1

PT

P1

16 KB

20 KB

24 KB

8 KB

12 KB

4 KB

0 KB
PT

P1 pagetable
1 5 4 …

P2
28 KB

TLB Accesses: SEQUENTIAL Example

load 0x1000
load 0x1004
load 0x1008
load 0x100c
…
load 0x2000
load 0x2004

load 0x0004
load 0x5000
(TLB hit)
load 0x5004
(TLB hit)
load 0x5008
(TLB hit)
load 0x500C
…
load 0x0008
load 0x4000
(TLB hit)
load 0x4004

0 1 2 3

CPU’s TLB

PTBR

Valid VPN PPN

1
1

1
2

5
4

QUIZ 10: TLBs
Consider a processor with 16-bit address space and 4kB page size.
Assume Page Table is at 0x2000 and each PTE is of 4 bytes.

Memory accesses

Total number of memory accesses

https://tinyurl.com/cs537-sp23-quiz10

QUIZ10: TLBS

Valid VPN PPN

0 2 6

0 7 23

0 2 5

0 3 2

0 1 89

Memory accesses

Performance OF TLB?

int sum = 0;
for (i=0; i<2048; i++) {

sum += a[i];
}

Miss rate of TLB: # TLB misses / # TLB lookups

TLB lookups? number of accesses to a = 2048

TLB misses?
= number of unique pages accessed
= 2048 / (elements of ‘a’ per 4K page)
= 2K / (4K / sizeof(int)) = 2K / 1K
= 2

Miss rate? = 2/2048 = 0.1%

Hit rate? (1 – miss rate) = 99.9%

Would hit rate get better or worse
with smaller pages?

TLB PERFORMANCE

How can system improve hit rate given fixed number of TLB entries?

Increase page size:
Fewer unique page translations needed to access same amount of memory

TLB Reach: Number of TLB entries * Page Size

Workload acCESS PATTERNS

int sum = 0;
for (i=0; i<2048; i++) {

sum += a[i];
}

int sum = 0;
srand(1234);
for (i=0; i<1000; i++) {

sum += a[rand() % N];
}
srand(1234);
for (i=0; i<1000; i++) {

sum += a[rand() % N];
}

Workload A Workload B

Sequential array accesses
almost always hit in TLB!

time

ad
dr

es
s

Sequential Accesses

time
ad

dr
es

s

Repeated Random Accesses

… …

Workload ACCESS PATTERNS

Spatial Locality Temporal Locality

Workload Locality

Spatial Locality: future access will be to nearby addresses
Temporal Locality: future access will be repeats to the same data

What TLB characteristics are best for each type?
Spatial:

– Access same page repeatedly; need same vpn à ppn translation
– Same TLB entry re-used

Temporal:
– Access same address near in future
– Same TLB entry re-used in near future
– How near in future? How many TLB entries are there?

OTHER TLB CHALLENGES

How to replace TLB entries ? LRU ? Random ?

TLB on context switches ? HW or OS ?

NEXT STEPS

Project 3 is out!

Next class: More TLBs and better pagetables!

