CS 744: POWERGRAPH

Shivaram Venkataraman Fall 2019

ADMINISTRIVIA

- Midterm grades (end of) this week
- Course Projects sign up for meetings
- Google Cloud credits

GRAPH DATA

edges Vertices

Datasets

Friendship among users

Knowledge base graph

- Entity: Berlin Capital of

Livermany

Microservies I graph of systems

Map - Locations & streets joining

Totarnet - hosts & links

Internet - TP

Application

Recommend new friends

Question answering

Debagging / Roof Cause analysis

Routing

11 Jo Ponting of
Internet Parkets

GRAPH ANALYTICS

SQL

Perform computations on graph-structured data

Ly Analytics on Talsular data

Examples

PageRank

Shortest path

Connected components

. . .

POWERGRAPH

Programming Model:

Gather-Apply-Scatter

Better Graph Partitioning with vertex cuts

Distributed execution (Sync, Async)

GATHER-APPLY-SCATTER

Gather: Accumulate info from nbrs

Apply: Accumulated value to vertex

Scatter: Update adjacent edges, vertices

Edge state, vertex state

```
// gather nbrs: IN NBRS
gather(Du, D(u,v),
     return Dv.rank / #outNbrs(v)
sum(a, b): return a+b
apply(Du, acc):
     rnew = 0.15 + 0.85 * acc
     Du.delta = (rnew - Du.rank)/
         #outNbrs(u)
     Du.rank = rnew
 // scatter nbrs: OUT NBRS
scatter(Du,D(u,v),Dv):
     if(|Du.delta| > \varepsilon)(Activate(v)
     return delta
```


Quent SYNC VS ASYNC

Sync Execution

Gather for all active vertices, followed by Apply, Scatter

Barrier after each minor-step

G(V2)

G(V2)

Rarrier

A(V1)

Barrier

Make

Async Execution

Execute active vertices, as cores become available

No Barriers! Optionally serializable

A(V,)
A(V)

Serties

Some

A(V)

All

Kake

DISTRIBUTED EXECUTION

State

Symmetric system, no coordinator

Load graph into each machine

Communicate across machines to spread updates, read state

GRAPH PARTITIONING

Vertices can be split across markines

RANDOM, GREEDY OBLIVIOUS

Data boading
punter of replicas of a vertex Three distributed approaches: Random Placement Los ystream place edges on machines
fast dots boading Place edges in same mother that already bas other edges with this vertex Coordinated Greedy Placement **Oblivious Greedy Placement**

Avoid fuis synchronization uni le data loading machine V_1 1,3 5 V_2 3,4 V_3

OTHER FEATURES

Async Serializable engine

Preventing adjacent vertex from running simultaneously

Acquire locks for all adjacent vertices

Fault Tolerance

Checkpoint at the end of super-step for sync For Async?

DISCUSSION

https://forms.gle/t2TJ4sEFDNZ8aDBo7

Consider the PageRank implementation in Spark vs synchronous PageRank in PowerGraph. What are some reasons why PowerGraph might be faster?

Both are computing sync updates - Fine grained parallelism - Les communication from vertex cuts - Not all modes are activated - State is mutable partitioning function in Spark!

What could be one shortcoming of PowerGraph compared to prior systems like MapReduce or Spark?

- Specialized system. Gross vertex analytics that in harder? - Fault tolerance or checkpoint Prestant?

- Stragglers,

NEXT STEPS

Next class: GraphX

Sign up for project check-ins!