
CS 744: Powergraph

Shivaram Venkataraman
Fall 2019

ADMINISTRIVIA

- Midterm grades (end of) this week
- Course Projects sign up for meetings
- Google Cloud credits

Scalable Storage Systems

Datacenter Architecture

Resource Management

Computational Engines

Machine Learning SQL Streaming Graph

Applications

GRAPH DATA

Datasets Application

GRAPH ANALYTICS

Perform computations on graph-structured data

Examples
PageRank
Shortest path
Connected components
…

PREGEL: PROGRAMMING MODEL
Message combiner(Message m1, Message m2):

return Message(m1.value() + m2.value());

void PregelPageRank(Message msg):
float total = msg.value();

vertex.val = 0.15 + 0.85*total;

foreach(nbr in out_neighbors):
SendMsg(nbr, vertex.val/num_out_nbrs);

NATURAL GRAPHS

POWERGRAPH

Programming Model:
Gather-Apply-Scatter

Better Graph Partitioning
with vertex cuts

Distributed execution (Sync, Async)

GATHER-APPLY-SCATTER
Gather: Accumulate info from nbrs

Apply: Accumulated value to vertex

Scatter: Update adjacent edges, vertices

// gather_nbrs: IN_NBRS
gather(Du, D(u,v), Dv):

return Dv.rank / #outNbrs(v)

sum(a, b): return a+b

apply(Du, acc):
rnew = 0.15 + 0.85 * acc
Du.delta = (rnew - Du.rank)/

#outNbrs(u)
Du.rank = rnew

// scatter_nbrs: OUT_NBRS
scatter(Du,D(u,v),Dv):

if(|Du.delta|> ε) Activate(v)
return delta

EXECUTION MODEL, CACHING

Active Queue

Delta caching
Cache accumulator value for vertex

Optionally scatter returns a delta
Accumulate deltas

SYNC VS ASYNC

Sync Execution
Gather for all active vertices,
followed by Apply, Scatter

Barrier after each minor-step

Async Execution
Execute active vertices,
as cores become available

No Barriers! Optionally serializable

DISTRIBUTED EXECUTION

Symmetric system, no coordinator

Load graph into each machine

Communicate across machines to spread
updates, read state

GRAPH PARTITIONING

RANDOM, GREEDY OBLIVIOUS

Three distributed approaches:
Random Placement

Coordinated Greedy Placement

Oblivious Greedy Placement

OTHER FEATURES

Async Serializable engine
Preventing adjacent vertex from running simultaneously
Acquire locks for all adjacent vertices

Fault Tolerance
Checkpoint at the end of super-step for sync
For Async?

DISCUSSION
https://forms.gle/t2TJ4sEFDNZ8aDBo7

Consider the PageRank implementation in Spark vs synchronous PageRank in
PowerGraph. What are some reasons why PowerGraph might be faster?

What could be one shortcoming of PowerGraph compared to prior systems
like MapReduce or Spark?

NEXT STEPS

Next class: GraphX
Sign up for project check-ins!

