
CS 744: SPARK STREAMING

Shivaram Venkataraman
Fall 2019

ADMINISTRIVIA

- Midterm grades this week
- Course Projects sign up for meetings

Scalable Storage Systems

Datacenter Architecture

Resource Management

Computational Engines

Machine Learning SQL Streaming Graph

Applications

CONTINUOUS OPERATOR MODEL

Long-lived operators

Distributed Checkpoints
for Fault Recovery

Naiad
Task

Control MessageDriver

Network Transfer

Mutable State

Stragglers ?

CONTINUOUS OPERATORS

SPARK STREAMING: GOALS

1. Scalability to hundreds of nodes

2. Minimal cost beyond base processing (no replication)

3. Second-scale latency

4. Second-scale recovery from faults and stragglers

DISCRETIZED STREAMS (DSTREAMS)

EXAMPLE
pageViews =
readStream(http://...,

"1s")

ones = pageViews.map(
event =>(event.url, 1))

counts =
ones.runningReduce(

(a, b) => a + b)

http://...

ARCHITECHTURE

DSTREAM API

Transformations
Stateless: map, reduce, groupBy, join

Stateful:
window(“5s”) à RDDs with data in [0,5), [1,6), [2,7)

reduceByWindow(“5s”, (a, b) => a + b)

SLIDING WINDOW

Add
previous 5
each time

STATE MANAGEMENT

Tracking State: streams of (Key, Event) à (Key, State)

events.track(
(key, ev) => 1,

(key, st, ev) => ev == Exit ? null : 1,

"30s”)

SYSTEM IMPLEMENTATION

OPTIMIZATIONS

Timestep Pipelining
No barrier across timesteps unless needed
Tasks from the next timestep scheduled before current finishes

Checkpointing
Async I/O, as RDDs are immutable
Forget lineage after checkpoint

FAULT TOLERANCE: PARALLEL RECOVERY

Worker failure
- Need to recompute state RDDs stored on worker
- Re-execute tasks running on the worker

Strategy
- Run all independent recovery tasks in parallel
- Parallelism from partitions in timestep and across timesteps

EXAMPLE
pageViews =
readStream(http://...,

"1s")

ones = pageViews.map(
event =>(event.url, 1))

counts =
ones.runningReduce(

(a, b) => a + b)

http://...

FAULT TOLERANCE

Straggler Mitigation
Use speculative execution
Task runs more than 1.4x longer than median task à straggler

Master Recovery
- At each timestep, save graph of DStreams and Scala function objects
- Workers connect to a new master and report their RDD partitions
- Note: No problem if a given RDD is computed twice (determinism).

DISCUSSION
https://forms.gle/xUvzC1bdV7H48mTM8

If the latency bound was made to 100ms, how do you think the above figure
would change? What could be the reasons for it?

Consider the pros and cons of approaches in Naiad vs Spark Streaming. What
application properties would you use to decide which system to choose?

NEXT STEPS

Next class: Graph processing
Sign up for project check-ins!

SHORTCOMINGS?

Expressiveness
- Current API requires users to “think” in micro-batches

Setting batch interval
- Manual tuning. Higher batch à better throughput but worse latency

Memory usage
- LRU cache stores state RDDs in memory

COMPUTATION MODEL: MICRO-BATCHES

Task

Control MessageDriver

S
H
U
F
F
L
E

Network Transfer

Micro-Batch

SUMMARY

Micro-batches: New approach to stream processing

Higher latency for fault tolerance, straggler mitigation

Unifying batch, streaming analytics

