
CS 744: WELD

Shivaram Venkataraman
Fall 2019

ADMINISTRIVIA

Course Project: Check in meetings Thu, Mon

Preparation for the meeting
– what have you done so far
– a timeline for things you want to do next
– what are some specific things we can help you with

Scalable Storage Systems

Datacenter Architecture

Resource Management

Computational Engines

Machine Learning SQL Streaming Graph

Applications

SETTING

Multi-core machines
Multiple functions and libraries
Data movement vs. compute

Alternate approaches?

// From Black Scholes
// all inputs are vectors
d1 = price * strike
d1 = np.log2(d1) + strike

GOALS

Work with independently written libraries

Enable the most impactful cross-library optimizations

Integrate incrementally into existing systems

SYSTEM OVERVIEW

WELD IR
Data types

Scalars, structs, vectors, dictionaries

Parallel loops and builders
merge(builder, value)
for(vector, builders, func)
result(builder)

BUILDER TYPES

EXAMPLES OF BUILDERS

b1 := vecbuilder[int];
b2 := merge(b1, 5);
b3 := merge(b2, 6);
result(b3)

b1 := vecbuilder[int];
b2 := for([1,2,3], b1, (b, x) => merge(b, x+1));
result(b2)

MULTIPLE BUILDER

data := [1,2,3];
r1 := map(data, x => x+1);
r2 := reduce(data, 0, (x, y) => x+y);

data := [1,2,3];
result(

for(data, {vecbuilder[int], merger[+]},
(bs, x) =>

{merge(bs.0, x+1), merge(bs.1, x)}
))

RunTIME API

API to express IR fragments in libraries

Capture dependencies across functions/libraries.

Lazy Evaluation

def square(self, arg):
Programatically construct an IR expression.
expr = weld.Multiply(arg, arg)
return NewWeldObject([arg], expr)

RUNTIME API

def large_cities_population(data):
data is a Pandas DataFrame object.
filtered = data[data["population"] > 500000]
sum = numpy.sum(filtered)
print sum

Dataframe col > f, Input Weld expr: v0: vec[int], c0: int
filter(v0, x => x > c0)

Numpy.sum Input Weld expr: v0: vec[int]
reduce(v0, 0, (x, y) => x+y)

RUNTIME API
reduce(

filter(v0,
(x) => x>500000),

0,
(x,y) => x+y)

result(
for(v0, merger[+,0],
(b, x) =>

if (x > 500000)
merge(b, x)

else
b

))

OPTIMIZATIONS

Loop Fusion
Fuse adjacent loops when output of one loop is input of other
Fuse multiple passes over the same vector

Loop Tiling
Break nested loops into blocks

OPTIMIZATIONS

Vectorization
Transform loops to use vector instructions

Common subexpression elimination
Transforms to not run the same computation multiple times

DISCUSSION
https://forms.gle/DxHfcmuS2juK1tuE7

What are some possible limitations of Weld as described in the paper?

What does the Weld paper tell us about the using scale-up vs. scale-out?

NEXT STEPS

Next class: PyWren
Project check-in meetings

