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Good morning !



ADMINISTRIVIA

Course Project Proposals
- Due on Friday!
- See Piazza for template
- Submission instructions soon

Midterm details
- Open book, open notes
- Held in class time 9.30-10.45am Central Time
- Type / Upload photos (extra 15 mins)
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MACHINE LEARNING: INFERENCE
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GOALS

- Interactive latencies (tail latency < 100ms)

- High throughput to handle load

- Improved prediction accuracy

- Generality (?)
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MODEL CONTAINERS

Run using Docker containers

Can be replicated across machines
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MODEL ABSTRACTION LAYER

Caching
- Improve performance for frequent queries
- LRU eviction policy
- Important for feedback
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BATCHING, QUEUING

Goals, Insight
- Increase latency (within SLO) 
for improved throughput

- Reduce RPC overheads
- GPU / BLAS acceleration

Approach
- Per container queues.
- Why?
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ADAPTIVE BATCHING
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MODEL SELECTION → Improve Accuracy
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SINGLE MODEL SELECTION
Multi-Arm Bandit formulation

- Explore vs Exploit
- Regret: Loss by not 
picking optimal action
- Goal: Minimize regret

Clipper
- Exp3 algorithm
- Single evaluation
- Scales to more models
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MULTI MODELS

Ensemble
- Combine output from models (weighted average)
- How do we get the weights ?

Robust Prediction
- React to model changes
- Output confidence score
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STRAGGLER MITIGATION

Why do stragglers occur?

Approach
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SUMMARY

• Clipper: ML inference Workloads + Requirements
• Layered architecture provides generality
• Caching, Batching, Replication to improve latency, throughput
• Multi-Arm bandits to improve accuracy



DISCUSSION
https://forms.gle/FCVhPURqz7HSbDtg6



Consider a scenario where you run a model serving service that hosts a 
number of different applications. The traffic for some applications is sporadic 
(e.g. only a few hours where they are used). What are some advantages / 
disadvantages of using Clipper for such a service?

Advantages Disadvantages
→ Rade might be contented

→ Adaptive batching

delayed
→
tune

→ multiple replicas - hooted.net?fashim?
elasticity

roti frequent greeted
→ Containerization

inlet applications
-

-
ppc T

we. provided pt⇒.

slow t
↳ de- Effie



bing.g.ms. homie :O:L, smug )different things ? judith
?

O D O

O
-

D Ao:

↳
µ ensembles Treasonable accurate

tetany inflation is very low


