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- Course project titles
- Project proposal aka Introduction (10/16)
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Related Work
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MACHINE LEARNING: STACK
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MOTIVATION: PERFORAMNCE PORTABILITY
Pytoreh → model file
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OPTIMIZATION COMPUTATION GRAPHS
Operator Fusion

Data layout
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TENSOR EXPRESSION LANGUAGE

Common Arithmetic, Math operations
Know the shape of the output and the data accessed

operator cry
↳ expressed in tensor expression language

↳tensor) math operations



CODE GENERATION

Nested parallelism

Tensorization
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Latency HIDING

What is the goal?
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AUTOMATING OPTIMIZATION

Goal: Create a specialized operator for input shape and layout
Challenge:

Choose appropriate schedule optimizations
Tiling size, loop unrolling

Automate the optimizer!
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ML-Based Cost model

Machine Learning Model Design Choices
Speed: Faster than time it takes to evaluate a config
Quality: Use a rank objective to predict the relative order of runtime

Gradient tree boosting model
memory access count
reuse ratio of each memory buffer at each loop level
one-hot encoding of loop annotations
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ML-BASED COST MODEL

Iteration
Select a batch of candidates 
Collect data 
Use as training data to update the model

How to select candidates?
Parallel Simulated Annealing

Start from a random config
Walk to a nearby config à

Successful if cost decreases Else Reject
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Distributed device pool

Pool of devices to speed up profiling
RPC interface to run a trial on device

Share device pools for multiple graphs



SUMMARY

TVM: Compiler for ML inference models
Support high performance for range of models, hardware devices

Key ideas
Graph-level optimizations
Tensor expression language: Code-gen, Latency hiding etc
ML based Cost Model for automation
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DISCUSSION
https://forms.gle/WiVgJ3abGXXgfBN99



Consider that you are building an optimizer for Spark programs instead of ML 
inference. What would be some configuration knobs that you could similarly 
tune? What might be different from the TVM optimizer?

Similar logic → latency hiding
overlap comp ,
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What is your takeaway from the following figure?
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NEXT STEPS

Next class: Ray
Course project: Oct 16 (introductions)
Midterm: Oct 22

latency hiding in spark ?
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