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Abstract
We introduce Gandiva, a new cluster scheduling frame-
work that utilizes domain-specific knowledge to improve
latency and efficiency of training deep learning models
in a GPU cluster.

One key characteristic of deep learning is feedback-

driven exploration, where a user often runs a set of jobs
(or a multi-job) to achieve the best result for a specific
mission and uses early feedback on accuracy to dynam-
ically prioritize or kill a subset of jobs; simultaneous
early feedback on the entire multi-job is critical. A sec-
ond characteristic is the heterogeneity of deep learning
jobs in terms of resource usage, making it hard to achieve
best-fit a priori. Gandiva addresses these two challenges
by exploiting a third key characteristic of deep learn-
ing: intra-job predictability, as they perform numerous
repetitive iterations called mini-batch iterations. Gan-
diva exploits intra-job predictability to time-slice GPUs
efficiently across multiple jobs, thereby delivering low-
latency. This predictability is also used for introspect-
ing job performance and dynamically migrating jobs to
better-fit GPUs, thereby improving cluster efficiency.

We show via a prototype implementation and micro-
benchmarks that Gandiva can speed up hyper-parameter
searches during deep learning by up to an order of mag-
nitude, and achieves better utilization by transparently
migrating and time-slicing jobs to achieve better job-to-
resource fit. We also show that, in a real workload of jobs
running in a 180-GPU cluster, Gandiva improves aggre-
gate cluster utilization by 26%, pointing to a new way of
managing large GPU clusters for deep learning.

1 Introduction
All men schedulers make mistakes; only the wise learn from
their mistakes.

-Winston Churchill
∗The first two authors have equal contribution. This work is done

while Wencong Xiao, Zhenhua Han, Xuan Peng, and Hanyu Zhao are

interns in Microsoft Research.

An increasingly popular computing trend over the last

few years is deep learning [32]; it has already had signif-

icant impact; e.g., on widely-used personal products for

voice and image recognition, and has significant poten-

tial to impact businesses. Hence, it is likely to be a vital

and growing workload, especially in cloud data centers.

However, deep learning is compute-intensive and

hence heavily reliant on powerful but expensive GPUs;

a GPU VM in the cloud costs nearly 10x that of a regu-

lar VM. Cloud operators and large companies that man-

age clusters of tens of thousands of GPUs rely on cluster

schedulers to ensure efficient utilization of the GPUs.

Despite the importance of efficient scheduling of deep

learning training (DLT) jobs, the common practice to-

day [12, 28] is to use a traditional cluster scheduler, such

as Kubernetes [14] or YARN [50], designed for handling

big-data jobs such as MapReduce [17]; a DLT job is

treated simply as yet another big-data job that is allo-

cated a set of GPUs at job startup and holds exclusive

access to its GPUs until completion.

In this paper, we present Gandiva, a new scheduling

framework that demonstrates that a significant increase

in cluster efficiency can be achieved by tailoring the

scheduling framework to the unique characteristics of the

deep learning workload.

One key characteristic of DLT jobs is feedback-driven
exploration (Section 2). Because of the inherent trial-

and-error methodology of deep learning experimenta-

tion, users typically try several configurations of a job

(a multi-job), and use early feedback from these jobs to

decide whether to prioritize or kill some subset of them.

Such conditional exploration, called hyper-parameter

search, can either be manual or automated [10, 33, 41].

Traditional schedulers run a subset of jobs to comple-

tion while queueing others; this model is a misfit for

multi-jobs, which require simultaneous early feedback

on all jobs within the multi-job. Also, along with multi-

jobs, other DLT jobs that have identified the right hyper-

parameters, run for several hours to days, leading to
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head-of-line-blocking, as long-running jobs hold exclu-

sive access to the GPUs until completion, while multi-

jobs depending on early feedback wait in queue. Long

queueing times force users to either use reserved GPUs,

or demand cluster over-provisioning, thus reducing clus-

ter efficiency.

Second, like any other cluster workload, DLT jobs

are heterogeneous because of the diverse application do-

mains they target. Jobs widely differ in terms of memory

usage, GPU core utilization, sensitivity to interconnect

bandwidth, and/or interference from other jobs. For ex-

ample, certain multi-GPU DLT jobs may perform much

better with affinitized GPUs, while other jobs may not be

as sensitive to affinity (Section 3). A traditional sched-

uler that treats a job as a black-box will hence achieve

sub-optimal cluster efficiency.

To address the twin problems of high latency and

low efficiency, Gandiva exploits a powerful property of

DLT jobs: intra-job predictability (Section 3). A job is

comprised of millions of similar, clearly separated mini-

batch iterations. For example, the GPU RAM usage of

a DLT job follows a cyclic pattern aligned with mini-

batch boundaries, usually with more than 10x differ-

ence in GPU RAM usage within a mini-batch. Gandiva
exploits this cyclic predictability to implement efficient

application aware time-slicing; in effect, it re-defines

the atom of scheduling from a job to automatically-

partitioned micro-tasks. This enables the cluster to over-

subscribe DLT jobs and provide early feedback through

time-slicing to all DLT jobs, including all jobs that are

part of a multi-job.

Gandiva also uses the predictability to perform profile-
driven introspection. It uses the mini-batch progress rate

to introspect its decisions continuously to improve clus-

ter efficiency (Section 4). For example, it packs multiple

jobs on the same GPU only when they have low memory

and GPU utilization; it dynamically migrates a commu-

nication intensive job to more affinitized GPUs; it also

opportunistically “grows” the degree of parallelism of a

job to make use of spare resources, and shrinks the job

when the spare resources go away. The introspection pol-

icy we presently implement is a stateful trial-and-error

policy that is feasible because of the predictability and

the limited state space of options we consider.

Beyond the specific introspection and scheduling pol-

icy evaluated in this paper, the Gandiva framework pro-

vides the following APIs that any DLT scheduling pol-

icy can leverage: (a) efficient suspend-resume or time-

slicing, (b) low-latency migration, (c) fine-grained pro-

filing, (d) dynamic intra-job elasticity, and (e) dynamic

prioritization. The key to making these primitives ef-

ficient and practical is the co-design approach of Gan-
diva that spans across both the scheduler layer and the

DLT toolkit layer such as Tensorflow [8] or PyTorch [38].

Traditional schedulers, for a good reason, treat a job as

a black-box. However, by exploiting the dedicated na-

ture of GPU clusters, Gandiva customizes the scheduler

to the specific workload of deep learning, thus providing

the scheduler more visibility and control into a job, while

still achieving generality to arbitrary DLT jobs.

We have implemented Gandiva by modifying two

popular frameworks, PyTorch and Tensorflow, to pro-

vide the necessary new primitives to the scheduler, and

also implemented an initial scheduling policy manager

on top of Kubernetes and Docker containers (Section 5).

We evaluate Gandiva on a cluster of 180 heterogeneous

GPUs and show, through micro-benchmarks and real

workloads, that (i) Gandiva improves the efficiency of

cluster scheduling by up to 26%, and (ii) Gandiva is re-

active enough to time-slice multiple jobs dynamically on

the same GPU, reducing the time to early feedback by as

much as 77%. We also show that, for a popular hyper-

parameter search technique [10], Gandiva improves the

overall completion time of the hyper-parameter search by

up to an order of magnitude while using same resources

(Section 6).

The key contributions of the paper are as follows.

• We illustrate various unique characteristics of the

deep learning workflow and map it to specific re-

quirements needed for cluster scheduling.

• We identify generic primitives that can be used

by a DLT job scheduling policy, and provide

application-aware techniques to make primitives

such as time-slicing and migration an order of mag-

nitude more efficient and thus practical by leverag-

ing DL-specific knowledge of intra-job periodicity.

• We propose and evaluate a new introspective

scheduling framework that utilizes domain-specific

knowledge of DLT jobs to refine its scheduling de-

cision continuously, thereby significantly improving

early feedback time and delivering high cluster effi-

ciency.

2 Background

Deep learning is a type of representation learning that au-

tomatically infers features from raw data in order to ac-

complish tasks such as image classification or language

translation [32]. Deep learning may be supervised (data

with labels) or unsupervised (data only). In either case,

the representation is a deep neural network model with

parameters called weights. These weights are carefully

arranged in layers and number typically in the millions.

These model weights are learned through training.

Deep learning training operates on a few samples of

data at a time called a mini-batch. It computes a set

of scores for each mini-batch by performing numerical
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Figure 1: Intra-server locality.
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Figure 2: Inter-server locality.
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Figure 3: 1-GPU interference.
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Figure 4: NIC interference.

computations using the model weights, called the for-
ward pass. Based on the desired task, an objective func-

tion is defined that measures an error between the com-

puted scores and desired scores. The error is populated

via a backward pass over the model, where it first com-

putes a gradient for each weight (i.e., the impact of each

weight on the error) and then applies a negative of the

gradient, scaled by a parameter called the learning rate,

to each weight to decrease the error. Both the forward

and backward passes typically involve billions of floating

point operations and thus leverage GPUs. Each forward-

backward pass is called a mini-batch iteration. Typi-

cally, millions of such iterations are performed on large

datasets to achieve high task accuracy.

Feedback-driven exploration. One pre-requisite for

achieving high accuracy is model selection. Discovery

of new models such as ResNet [24] or Inception [46] is

mostly a trial-and-error process today, though ways to

automate it is an active area of research [36].

Apart from the model structure, there are a number of

parameters, called hyper-parameters, that also need to

be specified as part of the DLT job. Hyper-parameters

include the number of layers/weights in the model, mini-

batch size, learning rate, etc. These are typically chosen

today by the user based on domain knowledge and trial-

and-error, and can sometimes even result in early train-

ing failure. Thus, early-feedback on DLT jobs is critical,

especially in the initial stages of training.

Multi-job. Once the user has identified a particular

model to explore further, the user typically performs

hyper-parameter search to improve task accuracy. This

can be done using various searching techniques over the

space of the hyper-parameters; that is, the user gener-

ates multiple DLT jobs or multi-jobs, each performing

full training using one set of hyper-parameters or con-

figuration. Because users typically explore hundreds of

such configurations, this process is computationally ex-

pensive. Thus, sophisticated versions of hyper-parameter

searches are available in the literature, such as Hyper-

Opt [10] and Hyperband [33]. For example, Hyperband

might initially spawn 128 DLT jobs and, in each round

(e.g., 100 mini-batch iterations), kill half of the jobs with

the lowest accuracy. Again, for these algorithms, early
feedback on the entire set of jobs is crucial because they

would be unable to make effective training decisions oth-

erwise.

3 DLT Job Characteristics

In this section, we motivate the design of Gandiva by

highlighting several unique characteristics of DLT jobs.

3.1 Sensitivity to locality
The performance of a multi-GPU DLT job depends on

the affinity of the allocated GPUs. Different DLT jobs

exhibit different levels of sensitivity to inter-GPU affin-

ity. Even for GPUs on the same machine, we observe dif-

ferent levels of inter-GPU affinity due to asymmetric ar-

chitecture: two GPUs might be located in different CPU

sockets (denoted as DiffSocket), in the same CPU socket,

but on different PCIe switches (denoted as SameSocket),

or on the same PCIe switch (denoted as SamePCIeSw).

Figure 1 shows different sensitivity to intra-server lo-
cality for two models VGG16 [44] and ResNet-50 [24].

When trained with two P100 GPUs using Tensorflow,

VGG16 suffers greatly under bad locality. With the worst

locality, when two GPUs are located in different CPU

sockets, VGG16 achieves only 60% of the best locality

config, where two GPUs are placed under the same PCIe

switch. On the other hand, the ResNet-50 is not affected

by GPU locality in this setting. This is because VGG16

is a larger neural model than ResNet-50, hence the model

synchronization in each mini-batch incurs a higher com-

munication load on the underlying PCIe bus.

We observe similar trends in a distributed setting. Fig-

ure 2 shows the performance of a 4-GPU Tensorflow

job running with different inter-server locality, training

ResNet-50 and InceptionV3 [46] models. Even when

interconnected with a 40G InfiniBand network, the per-

formance difference is clearly seen when the job is as-

signed to 4 GPUs, where they are evenly scattered across

4 servers (denoted as 4*1-GPU), 2 servers (denoted as

2*2-GPU), and all in one server (denoted as local 4-

GPU), though the sensitivity to locality of the two mod-

els is different.

Thus, a DLT scheduler has to take into account a job’s

sensitivity to locality when allocating GPUs.
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3.2 Sensitivity to interference

When running in a shared execution environment, DLT

jobs might interfere with each other due to resource con-

tention. We again observe that different DLT jobs exhibit

different degrees of interference.

Interference exists even for single-GPU jobs. When

placing a Language Model [56] job (marked as LM) with

another job under the same PCI-e switch, Figure 3 shows

the performance degradation due to intra-server interfer-

ence. When two LMs run together, both jobs suffer 19%

slowdown. However, ResNet-50 does not suffer from

GPU co-location with LM. Neural Machine Translation

(GNMT) [51] exhibits a modest degree of interference

with LM. Similarly, we also observe various degrees of

interference for multi-GPU training with different types

of training models. We omit the result due to space limi-

tation.

Figure 4 shows inter-server interference on two 4-

GPU servers that are connected with a 40G InfiniBand

network. When running multiple 2-GPU jobs, where

each GPU is placed on different server, ResNet-50 shows

up to 47% slowdown, InceptionV3 shows 30% slow-

down, while DeepSpeech [23] only shows 5% slowdown.

In summary, popular deep learning models across dif-

ferent application domains such as vision, language, and

speech demonstrate different levels of sensitivity to lo-

cality and interference. To cater to these challenges,

Gandiva leverages a key characteristic of DLT jobs,

which we elaborate next.
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Figure 6: GPU usage options in Gandiva.

3.3 Intra-job predictability

A DLT job consists of numerous mini-batch iterations.

The total GPU memory used1 during a 20s snapshot

of training on ImageNet data when using ResNet-50

model [24] on four K80 GPUs is shown in Figure 5(a).

The GPU memory used clearly follows a cyclic pattern.

Each of these cycles corresponds to the processing of a

single mini-batch (about 1.5s), with the memory increas-

ing during the forward pass and decreasing during the

backward pass. The maximum and minimum GPU mem-

ory used is 23GB and 0.3GB, respectively, or a factor of

77x. This ratio scales with the mini-batch size (typically

between 16 to 256; 128 in this case).

The total GPU memory used during a 20s snapshot of

training on WMT’14 English German language dataset

when using GNMT model [51] on one K80 GPU is

shown in Figure 5(b). While the mini-batch iterations

are not identical to each other as in the ImageNet exam-

ple (due to differing sentence lengths and the use of dy-

namic graphs in PyTorch), the graph has a similar cyclic

nature. The difference between maximum and minimum

is smaller (3x) primarily due to larger model (0.4GB) and

smaller mini-batch size (16 in this example).

Apart from image and language models shown here,

other training domains such as speech, generative

adverserial networks (GANs), and variational auto-

encoders all follow a similar cyclic pattern (not shown

due to space limitation) since the core of training is the

gradient descent algorithm performing many mini-batch

iterations.

Leveraging predictability. This characteristic behavior

is exploited in Gandiva in multiple ways. First, a DLT

job can be automatically split into mini-batch iterations

and a collection of these iterations over 60 seconds, say

a micro-task, forms a scheduling interval. Second, by

performing the suspend operation at the minimum of the

memory cycle, the amount of memory to be copied from

GPU to be saved in CPU can be significantly reduced,

thereby enabling suspend/resume and migration to be an

order of magnitude more efficient than a naı̈ve imple-

mentation. Third, the mini-batch progress rate can be

profiled and used as a proxy to evaluate the effectiveness

of applying mechanisms such as packing or migration.

4 Design

High latency and low utilization in today’s cluster arises

because DLT jobs are assigned a fixed set of GPUs ex-
clusively (Figure 6). Exclusive access to GPUs causes

1This is actual GPU memory used. Toolkits like Py-

Torch/Tensorflow use caching to avoid expensive GPU memory

(de)allocations.
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head-of-line blocking, preventing early feedback and re-

sulting in high queuing times for incoming jobs. Exclu-

sive access to a fixed set of GPUs also results in low GPU

utilization when jobs are unable to utilize their assigned

GPUs fully.

4.1 Mechanisms

In Gandiva, we address these inefficiencies by remov-

ing the exclusivity and fixed assignment of GPUs to DLT

jobs in three ways (Figure 6). First, during overload, in-

stead of waiting for current jobs to depart, Gandiva al-

lows incoming jobs to time-share GPUs with existing

jobs. This is enabled using a custom suspend-resume

mechanism tailored for DLT jobs along with selective

packing. Second, Gandiva supports efficient migration

of DLT jobs from one set of GPUs to another. Migra-

tion allows time-sliced jobs to migrate to other (recently

vacated) GPUs or for de-fragmentation of the cluster so

that incoming jobs are assigned GPUs with good locality.

Third, Gandiva supports a GPU grow-shrink mechanism

so that idle GPUs can be used opportunistically. In order

to support these mechanisms efficiently and enable ef-

fective resource management, Gandiva introspects DLT

jobs by continuously profiling their resource usage and

estimating their performance. We now describe each of

these mechanisms.

Suspend-Resume and Packing. Suspend-resume is

one mechanism Gandiva uses to remove exclusivity of

a set of GPUs to a DLT job. Modern operating systems

support efficient suspend-resume for CPU process time-

slicing. Gandiva leverages this mechanism and adds cus-

tom support for GPU time-slicing.

As shown in Figure 5(a), usage of GPU memory by

DLT jobs has a cyclic pattern with as much as 77x dif-

ference between the minimum and maximum memory

usage. The key idea in Gandiva is to exploit this cyclic

behavior and suspend-resume DLT jobs when their GPU

memory usage is at their lowest. Thus, when a suspend

call is issued, the DLT toolkit waits until the minimum

of the memory usage cycle, copies the objects stored in

the GPU to the CPU, releases all its GPU memory alloca-

tions (including cache), and then invokes the classic CPU

suspend mechanism. Later, when the CPU resumes the

job, the DLT framework first allocates appropriate GPU

memory, copies the stored objects back to the GPU, and

then resumes the job.

Suspend-resume may also initiate a change of GPU

within the same server (e.g., in the case of six 1-GPU

jobs time-sharing 4-GPUs). While changing GPU is ex-

pensive, we hide this latency from the critical path. As

we show in our evaluation (Section 6.1), for typical im-

age classification jobs, suspend-resume together can be

accomplished in under 100ms, while for large language

translation jobs suspend-resume can take up to 1s. Given

a time-slicing interval of 1 minute, this amounts to an

overhead of 2% or less.

Note that suspend in Gandiva may be delayed by at

most a mini-batch interval of the DLT job (typically, a

few seconds or less), but we believe this is a worthwhile

trade-off as it results in significantly less overhead due to

the reduced GPU-CPU copy cost and less memory used

in the CPU. Further, useful work is accomplished during

this delay. The scheduler keeps track of this delay and

adjusts the time-slicing interval accordingly for fairness.

An alternative to suspend-resume for time-slicing is to

run multiple DLT jobs on a GPU simultaneously and let

the GPU time-share the jobs. We call this packing. Pack-

ing in GPU is efficient only when the packed jobs do

not exceed the GPU resources (cores, memory) and do

not adversely impact each other. If jobs interfere, pack-

ing can be significantly worse than suspend-resume (Sec-

tion 6.1). We use profiling to monitor the resource and

progress of DLT jobs when they have exclusive access. If

two jobs are identified as candidates for packing, we pack

them together and continue monitoring them. If a given

packing results in adverse impact on jobs’ performance,

we unpack those jobs and revert to suspend-resume.

Migration. Migration is the mechanism Gandiva uses

to change the set of GPUs assigned to a DLT job. Mi-

gration is useful in several situations such as i) moving

time-sliced jobs to vacated GPUs anywhere in the clus-

ter; ii) migrating interfering jobs away from each other;

iii) de-fragmentation of the cluster so that incoming jobs

get GPUs with good locality.

We evaluate two approaches for tackling DLT pro-

cess state migration. In the first approach, we leverage a

generic process migration mechanism such as CRIU [1].

Because CRIU by itself does not support migration of

processes that use the GPU device, we first checkpoint

GPU objects and remove all GPU state from the process

before CRIU is invoked. Because CRIU checkpoints and

restores the entire process memory, the size of the check-

point is on the order of GBs for these DLT jobs using Py-

Torch. Thus, the resulting migration overhead is about 8-

10s for single GPU jobs and higher for multi-GPU jobs.

The second approach we consider is the use of

DLT jobs that are checkpoint-aware. DLT frame-

works such as Tensorflow already support APIs (e.g.,
tensorflow.train.saver) that allow automatic

checkpoint and restore of models. This API is used to-

day to ensure that long running jobs do not have to be

rerun due to server failures. We extend the framework

to support migration of such jobs. By warming up the

destination before migration and only migrating the nec-

essary training state, we can reduce the migration over-
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head to as little as a second or two (Section 6.1). With

either approach, we find that the overhead of inter-server

migration is worthwhile compared to the benefits it pro-

vides in terms of higher overall GPU utilization.

Grow-Shrink. The third mechanism that Gandiva uses

to remove the exclusivity of GPUs to a DLT job is

grow-shrink. This mechanism primarily targets situa-

tions when the cluster may not be fully utilized, say, late

at night. The basic idea is to grow the number of GPUs

available to a job opportunistically during idle times and

correspondingly also shrink the number of GPUs avail-

able when the load increases.

Many DLT jobs, especially in the image domain, see

linear performance scaling as the number of GPUs is in-

creased. Gandiva applies this mechanism only to those

DLT jobs that specifically declare that they are adaptive

enough to take advantage of these growth opportunities.

When multiple DLT jobs fit this criteria, Gandiva uses

profiling information, discussed next, to estimate each

job’s progress rate and then allocate GPUs accordingly.

Profiling. Like any scheduler, Gandiva monitors re-

source usage such as CPU and GPU utilization,

CPU/GPU memory, etc. However, what is unique

to Gandiva is that it also introspects DLT jobs in

an application-aware manner to estimate their rate of

progress. This introspection exploits the regular pattern

exhibited by DLT jobs (Section 3) and uses the periodic-

ity to estimate their progress rate.

Gandiva estimates a DLT job’s mini batch time,

the time to do one forward/backward pass over a batch

of input data, as the time taken between two minimums

of the GPU memory usage cycles (Figure 5(a)). Be-

cause DLT jobs typically perform millions of such mini

batch operations in their lifetime, the scheduler compares

the mini batch time of a DLT prior to and post a

scheduling decision to determine its effectiveness.

For example, consider the example of packing two

DLT jobs in a GPU described earlier. By comparing the

mini batch time of each of the two DLT jobs before

and after packing, Gandiva can decide whether packing

is effective. Without such profiling, in order to make a

packing decision, one would have to model not only the

two DLT jobs’ performance on various GPUs but also the

various ways in which they may interfere with each other

(e.g., caches, memory bandwidth, etc.), a non-trivial task

as evidenced by the varied performance of packing we

see in Section 6.1.

4.2 Scheduling Policy
Definitions: Before we describe the details of the sched-

uler, we define some terminology. DLT jobs are encap-

sulated in containers (Section 5) and include the num-

ber of GPUs required, their priority (can be dynamically
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Figure 7: Scheduling example in a 16-GPU Cluster.

changed), and a flag indicating if the job is capable of

grow-shrink. We assume the number of GPUs requested

by a job is a power of two (typical for DLT jobs today).

A cluster is composed of one or more servers, with each

server having one or more GPUs. Further, we assume a

dedicated GPU cluster for DLT jobs [28, 12].

We define the height of a server as
⌈
M/N

⌉
, where M

is the number of allocated GPUs and N is the number

of total GPUs. Thus, the suspend/resume mechanism

will only be used when the height of a server exceeds

one. The height of a cluster is defined as the maximum

height of all its servers. Overload occurs when the height

of the cluster is greater than one; i.e., the sum of re-

quested/allocated GPUs of all jobs is greater than the to-

tal number of GPUs. We define the affinity of a server

as the type of jobs (based on GPUs required) assigned to

that server. For example, initially servers have affinity of

zero and, if a job that requires two GPUs is assigned to a

server, the affinity of that server is changed to two. This

parameter is used by the scheduler to assign jobs with

similar GPU requirements to the same server.

Goals: The primary design goal of the Gandiva sched-

uler is to provide early feedback to jobs. In prevalent

schedulers, jobs wait in a queue during overload. In con-

trast, Gandiva supports over-subscription by allocating

GPUs to a new job immediately and using the suspend-

resume mechanism to provide early results. A second de-

sign goal is cluster efficiency. This is achieved through

a continuous optimization process that uses profiling and

a greedy heuristic that takes advantage of mechanisms

such as packing, migration, and grow-shrink. Cluster-
level fairness is not a design goal in Gandiva. While we

believe achieving long-term fairness at the cluster level

is feasible using the Gandiva mechanisms, in this paper,

we focus only on providing fairness among jobs at each

server using the suspend-resume mechanism and leave

cluster-level fairness to future work.

To achieve these goals, the Gandiva scheduler oper-

ates in two modes: reactive and introspective. By re-

active mode, we refer to when the scheduler reacts to

events such as job arrivals, departures, machine failures

etc. By introspective mode, we refer to a continuous pro-

cess where the scheduler aims to improve cluster utiliza-
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Algorithm 1 getNodes(in job, out nodes)

1: nodes0 ← f indNodes( job.gpu,a f f inity ← job.gpu)
2: nodes1 ← minLoadNodes(node0)
3: nodes2 ← f indNodes( jog.gpu,a f f inity ← 0)
4: nodes3 ← f indNodes( job.gpu)
5: if nodes1 and height(nodes1)< 1:

6: return nodes1 // Same affinity with free GPUs

7: if nodes2 and numGPUs(nodes2)≥ job.gpu:

8: return nodes2 // Unallocated GPU servers

9: if nodes3:

10: return nodes3 // Relax affinity constraint

11: elif nodes1:

12: return nodes1 // Allow over-subscription

13: else:
14: enqueue( job) // Job queued

tion and job completion time. Note that the scheduler can

be operating in both modes at the same time. We discuss

each of these modes next.

4.2.1 Reactive Mode

The reactive mode is designed to take care of events such

as job arrivals, departures, and machine failures. Con-

ventional schedulers operate in this mode. Here we dis-

cuss only our job placement policy since we follow the

conventional approach for failure handling.

When a new job arrives, the scheduler allocates

servers/GPUs for the job. The node allocation policy

used in Gandiva is shown in Algorithm 1. f indNodes
is a function to return the node candidates that satisfy

the job request with an optional parameter for affinity

constraint. Initially, Gandiva tries to find nodes with the

same affinity as the new job and, among those, ones with

the minimum loads. If such nodes exist and their height

is less than one (lines 5–6), that node is assigned. Oth-

erwise, Gandiva tries to find and assign un-affinitized

nodes (lines 7–8). If no such free servers are available,

the third option is to look for nodes with free GPUs while

ignoring affinity (lines 9–10). This may result in frag-

mented allocation across multiple nodes but, as we shall

see later, migration can be used for defragmentation. If

none of the above work, it implies that no free GPUs are

available in the cluster. In this case, if nodes with the

same affinity exist, they are used with suspend-resume

(lines 11–12); if not, the job is queued (lines 13–14).

For example, as shown in Figure 7, jobs that require

1-GPU are placed together but jobs that require 2 or 4

GPUs are placed on different servers. Further, we try to

balance the over-subscription load on each of the servers

by choosing the server with the minimum load (e.g., six

1-GPU jobs on each of the two servers in the figure).

Conventional schedulers will use job departures to

pick the next job from the waiting queue for placement.

J0 J0

D

Server0

Server1

Server2

Server3

Server4

J3

J3

Server5

Server6

J1

J1

D J2

J2D

J0 Job0 slot D DeepSpeech slot
OtherJob’s slot Migrate

Figure 8: Job migration in a shared cluster.

In addition, in Gandiva, we check whether the height of

the cluster can be reduced; e.g., by migrating a job that is

suspended to the newly vacated GPU. This job could be

from the same server or from any other server in the clus-

ter. Finally, job departures can also trigger migrations for

improving locality, as discussed in the next section.

Gandiva’s job placement policy takes into account

two factors. First, unlike conventional schedulers, Gan-
diva allows over-subscription. When a server is over-

subscribed, we do weighted round-robin scheduling to

give each job its fair time-share. Second, unlike today’s

schedulers, where GPU allocation is a one-time event

at job arrival, Gandiva uses the introspective mode, dis-

cussed next, to improve cluster utilization continuously.

Thus, Gandiva relies on a simple job placement policy

to allocate GPU resources quickly to new jobs, thereby

enabling early feedback.

4.2.2 Introspective Mode

In the introspective mode, Gandiva continuously moni-

tors and optimizes placement of jobs to GPUs in the clus-

ter to improve the overall utilization and the completion

time of DLT jobs.

Packing. Packing is considered only during overload.

The basic idea behind packing is to run two or more

jobs simultaneously on a GPU to increase efficiency. If

the memory requirements of the packing jobs combined

are higher than GPU memory, the overhead of “paging”

from CPU memory is significantly high [16] that pack-

ing is not effective. When the memory requirements of

two or more jobs are smaller than GPU memory, pack-

ing still may not be more efficient than suspend-resume

as we show in Section 6.1. For example, for some DLT

jobs, packing increases efficiency, while for others pack-

ing can be worse than suspend-resume.

Analytically modeling performance of packing is a

challenging problem given the heterogeneity of DLT

jobs. Instead, Gandiva relies on a greedy heuristic to

pack jobs. When jobs arrive, we always run them in ex-

clusive mode using suspend-resume and collect profiling

information (GPU utilization, memory and job progress

rate). Based on the profiling data, the scheduler main-

tains a list of jobs sorted by their GPU utilization. The

scheduler greedily picks the job with the lowest GPU uti-
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lization and attempts to pack it on a GPU with the lowest

GPU utilization. We only do this when the combined

memory utilization of the packed jobs do not exceed the

overall memory of the GPU. Packing is deemed success-

ful when the total throughput of packed jobs is greater

than time-slicing. If packing is unsuccessful, we undo

the packing and try the next lowest utilization GPU. If

the packing is successful, we find the next lower utiliza-

tion job and repeat this process. Based on our evaluation,

we find that this simple greedy heuristic achieves 26%

efficiency gains.

Migration. GPU locality can play a significant role in

the performance of some jobs (Section 3.1). In Gandiva,

we use migration to improve locality whenever a job de-

parts and also as a background process to “defrag” the

cluster. To improve locality, we pick jobs that are not

co-located and try to find a new co-located placement.

Figure 8 illustrates an example from a cluster experiment

(Section 6.4). When a multi-job with 4 jobs that requires

2-GPUs each was scheduled, it had poor GPU affinity;

only J0’s two GPUs are colocated with the other 3 jobs

in the multi-job (J1, J2, and J3,) assigned to separated

GPUs. Three minutes later, a background training job,

DeepSpeech, completes and releases its 8 GPUs. Three

of the 8 GPUs, marked as D in Figure 8 in three differ-

ent servers (server 1, 3, and 4), can improve the training

efficiency of the multi-job. Gandiva hence initiates the

migration process, relocating J1, J2, and J3 to colocated

GPUs. For de-fragmentation, we pick the server with the

most free GPUs among all non-idle ones. We then try

to move the jobs running on that server to others. The

job will be migrated to another server with fewer free

GPUs, as long as there is negligible performance loss.

We repeat this until the number of free GPUs on every

non-idle server is less than a threshold (3 out of 4 in our

experiments) or if no job will benefit from migration.

Grow-shrink. Grow-shrink is only triggered when the

cluster is under-utilized and the DLT jobs specifically

identify themselves as amenable to grow-shrink. In our

current system, we only grow jobs to use up to the max-

imum number of GPUs available in a single server. Fur-

ther, we trigger growth only after an idle period to avoid

thrashing and shrink immediately when a new job might

require the GPUs.

Time-slicing. Finally, we support round robin schedul-

ing in each server to time-share GPUs fairly (Sec-

tion 6.1). When jobs have multiple priority levels, higher

priority jobs will never be suspended to accommodate

lower priority jobs. If a server is fully utilized with

higher priority jobs, the lower priority job will be mi-

grated to another server, if feasible.

5 Implementation

DLT jobs are encapsulated as Docker containers con-

taining our customized versions of DL toolkits and a

Gandiva client. These jobs are submitted to a Kuber-

netes [14] system. Gandiva also implements a custom

scheduler that then schedules these jobs.

5.1 Scheduler
Gandiva consists of a custom central scheduler and also a

client component that is part of every DLT job container.

The scheduler is just another container managed by Ku-

bernetes. Kubernetes is responsible for overall cluster

management, while the Gandiva scheduler manages the

scheduling of DLT jobs. The Gandiva scheduler uses the

Kubernetes API to get cluster node and container infor-

mation and, whenever a new container is submitted, the

scheduler assigns it to one or more of the GPUs in the

cluster based on the scheduling policy.

When a container is scheduled on a node, initially only

the Gandiva client starts executing. It then polls the Gan-
diva scheduler to identify which GPUs to make available

for the DLT job and also controls the execution of the

DLT job using suspend/resume and migrate commands.

While scheduling of all the GPUs in our cluster is fully

controlled by the central scheduler, a hierarchical ap-

proach may be needed if scalability becomes a concern.

5.2 Modifications to DL toolkits
In the interest of space, we describe only the time-slicing

implementation for PyTorch and the migration imple-

mentation for Tensorflow.

PyTorch time-slicing. The Gandivaclient issues a SIGT-

STP signal to indicate that the toolkit must suspend the

process. It also indicates whether or not the resume

should occur in a new GPU via an in-memory file. Upon

receiving the signal, the toolkit sets a suspend flag and

executes the suspend only at the end of a mini-batch

boundary.

In Tensorflow, a define-and-run toolkit, the mini-

batch boundaries are easily identified (end of

session.run()). In PyTorch, a define-by-run

toolkit, we identify the mini-batch boundary by tracking

GPU memory usage cycles as part of PyTorch’s GPU

memory manager (THCCachingAllocator) and looking

for a cycle minimum whenever GPU memory is freed.

Once the minimum is detected, the toolkit i) copies

all stored objects from GPU to CPU, ii) frees up GPU

allocations, and iii) suspends the process. When Gan-
diva client issues a SIGCONT signal, the toolkit allo-

cates GPU memory, copies stored objects from CPU to

GPU, and resumes the process. To handle device address
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change on resume, we track GPU objects in the toolkit

and patch them with the new addresses. Changing GPU

involves calling cudaDeviceReset and CudaInit, which

can take 5-10s. We hide this latency by performing these

actions in the background while “suspended”.

Tensorflow migration. We make changes to Tensorflow

(TF) with 400+ lines of Python/C++ code. With 200+

line of additional code, we deploy a Migration Helper on

each server to support on-demand checkpointing and mi-

gration. When receiving a migration command from the

scheduler, the destination Helper first warms up the TF

session and waits for the checkpoint. The source Helper

then asks TF to save the checkpoint, moves the check-

point to destination in case of cross-server migration, and

finally resumes the training session. To speed up the mi-

gration process, we adopt Ramdisk to keep the check-

point in memory. In the cross-server case, the modified

TF saves the checkpoint to the remote Ramdisk directly

through the Network File System (NFS) protocol.

When the Migration Helper asks a job to perform

checkpointing, the modified TF calls tf.Saver at the

end of a mini-batch. For data parallelism, the checkpoint

only includes the model in one GPU, regardless of the

number of GPUs used in the training. To speedup TF mi-

gration further, we do not include the meta-graph struc-

ture in a checkpoint as it can be reconstructed based on

user code.

In the warm-up phase, the modified TF checks the

GPU configuration and reconstructs the meta-graph. It

further creates the Executor to run a warm-up opera-

tion to ensure that the initialization is not deferred lazily.

When resuming the training process, the modified TF

loads the checkpoint, with multiple GPUs loading it in

parallel, and continues the training.

6 Evaluation

In this section, we first present micro-benchmark results

of the Gandiva mechanisms. We then evaluate the ben-

efit Gandiva provides to multi-jobs. Finally, we present

our evaluation results of the experiments on a 180-GPU

cluster.

Our servers are 12-core Intel Xeon E5-

2690@2.60GHz with 448GB RAM and two 40Gbps

links (no RDMA), running Ubuntu 16.04. Each server

has either four P100 or four P40 GPUs. All servers are

connected to a network file-system called GlusterFS [3]

with two-way replication on the server disks (SSDs).

For jobs that use more than one GPU, we only evaluate

data parallelism (as it is more common than model

parallelism), and use synchronous updates (though we

can support asynchronous update as well). Our evalu-

ation uses 18 models, 8 implemented in PyTorch 0.3

and 10 implemented in TensorFlow 1.4. The batch size

Figure 9: Time slicing six 1-GPU jobs on 4 GPUs.

Figure 10: Packing jobs on single P40 GPU.

used for training are defaults from their references. All

models take 6s or less per mini-batch in our evaluation.

Thus, we set the time-slicing interval to 60s in these

experiments.

6.1 Micro-benchmarks
In this section, we evaluate the Gandiva mechanisms,

viz., time-slicing, packing, grow-shrink, and migration.

Time-slicing. We use six 1-GPU jobs on a single server

with four P100 GPUs to illustrate time-slicing. These

are ResNet-50 [24] models trained on the Cifar10 dataset

using the PyTorch toolkit. When six 1-GPU jobs share

four GPUs, each job ideally should get four minutes of

GPU time out of every six.

Figure 9 shows a trace with the progress rate of each

of the jobs over time. Initially, four 1-GPU long jobs are

running and at time t=25min, two 1-GPU short jobs are

scheduled at this server. One can see that the initial four

1-GPU jobs now get 4/6th their previous share. When

the two short jobs depart, the long jobs return to their ear-

lier performance. Also, note that the aggregate through-

put of all jobs (right scale) is only marginally affected

(less than 2%) during the entire trace, demonstrating that

time-slicing is an efficient mechanism for providing early

feedback during over-subscription.

Packing. Table 1 shows the performance of packing

multiple jobs on a single GPU for various DLT mod-
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GPU Time Packing Packing
Job Util Slicing Max Gain

(%) (mb/s) (mb/s) (%)

VAE [29] 8.7 81.8 419.3 412

SuperResolution [43] 14.1 40.3 145.2 260

RHN [58] 61.6 10.1 14.8 46

SCRNN [37] 66.8 16.7 23.3 39

MI-LSTM [52] 76.2 22.2 25.9 17

LSTM [5] 87.2 63.8 53.0 -16

ResNet-50 [24] 94.0 10.3 9.0 -13

ResNext-50 [53] 98.9 83.6 74.4 -11

Table 1: Packing multiple jobs on P40 (mb/s = minibatches/s).

Figure 11: Grow from 1 to 4 GPUs, Shrink to 1-GPU.

els using PyTorch toolkit. For small DLT jobs with low

GPU utilization, packing can provide significant gains of

as much as 412%. For DLT jobs with middling GPU uti-

lization, packing gains vary from model to model with

some showing gains of up to 46%, but some exhibiting a

loss of 16%. Finally, for image processing jobs with high

utilization, such as ResNet-50 or ResNext-50 on the Ci-

far10 dataset, packing hurts performance by 11-13% .

Note that these packing results are without enabling

NVIDIA’s multi-process service (MPS) [7]. We found

that MPS results in significant overhead in P40/P100

GPUs. However, hardware support for MPS in V100

GPUs [7] suggests that the use of MPS may be able to

increase further packing gains in V100 GPUs.

Based on these results, predicting packing perfor-

mance even with jobs of the same type appears chal-

lenging, let alone when jobs of different types are packed

together. Instead, Gandiva adopts a profiling-based ap-

proach to packing. Figure 10 shows a case where two

image super-resolution jobs [43] are initially being time-

sliced on the same P40 GPU. After some time, the sched-

uler concludes that their memory and GPU core utiliza-

tion is small enough that packing them is feasible and

schedules them together on the GPU. The scheduler con-

tinues to profile their performance. Because their aggre-

gate performance improves, packing is retained; other-

wise (not shown), packing is undone and the jobs con-

tinue to use time-slicing.

Grow-Shrink. Grow-shrink is useful primarily when

the cluster is under-utilized. Gandiva uses grow-shrink

only for those jobs that specifically state that they can

make use of this feature because users may want to ad-

Figure 12: The breakdown of TF migration overhead.

just the learning rate and the batch size depending on the

number of GPUs available. Figure 11 demonstrates this

mechanism in action. Initially, a 4-P100 server has three

jobs, 1-GPU growth-capable job, 1-GPU short job, and

a 2-GPU short job, all using ResNet-50 with PyTorch.

At time t=25min, the short job departs and after a time-

out period of no new jobs being allocated to this GPU,

the long running job expands to use 2 GPUs. At time

t=45min, the second short job departs and the long run-

ning job expands to use all four GPUs. At time t=75min,

a new 2-GPU job enters and the long job immediately

shrinks to use two GPUs and, when another new 1-GPU

job appears, the long job shrinks to use only 1 GPU.

This micro-benchmark demonstrates that idle GPU re-

sources can be effectively used with a mechanism like

grow-shrink.

Migration. We use a server with 8 P100 GPUs and

the Tensorflow toolkit to evaluate migration overhead.

First, we migrate a ResNet-50 single-server training job

from one server to another. Figure 12 shows the detailed

breakdown with a varying number of GPUs. Using our

optimized implementation, we are able to eliminate or

hide the majority of the migration overhead. The ac-

tual migration time, saving and restoring checkpoints, re-

mains almost constant regardless of the number of GPUs

because we save only one copy of the model. The load-

ing of the in-memory checkpoint in each GPU runs in

parallel and does not saturate the PCI-e bandwidth. The

warm-up time and the cost due to meta-graph and check-

points from other GPUs grow with the number of GPUs.

As a result, we are able to save 98% of the migration

overhead of 35s for 8-GPU jobs.

Figure 13 shows the max, min, and average intra-

server and inter-server migration time of a 1-GPU job

with 10 different deep learning models (summarized in

Table 2) over 3 runs. Six of the 10 can be migrated within

1 second. Even the largest model (DeepSpeech [23] with

a 1.4GB checkpoint) can be migrated in about 3.5 sec-

onds, which is negligible compared to the long training

time that often lasts for hours or days.
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Figure 13: Migration time of real workloads.

6.2 Model exploration in a multi-job

AutoML, or automatic model exploration through hyper-

parameter search is an important way to help users iden-

tify good neural models [21]. Typically, AutoML in-

volves a hyper-parameter configuration generator and a

performance evaluator. The generator uses different al-

gorithms [11, 33] to generate new candidate configura-

tions (DLT jobs), sometimes using the performance of

prior configuration runs as a signal. The evaluator uses

the early output of running jobs (e.g., the learning curve)

to predict the jobs’ final performance and decide whether

to continue running a given job or terminate it early.

Compared to a traditional scheduler where the number

of configurations explored at any given time is limited by

the number of GPUs available, Gandiva provides new

primitives such as time-slicing and dynamic prioritiza-

tion for AutoML algorithms to exploit. For example, the

configuration generator is no longer limited by the num-

ber of GPUs and can dynamically generate many more

configurations. Similarly, the performance evaluator can

not only decide whether to continue or terminate a job

but also how much priority to give to each configuration.

In this section, we explore one particular instance of

using these new options enabled by Gandiva to highlight

the potential benefit for AutoML. Detailed analysis of

when and how many configurations to generate and/or

how to best allocate priority among the various running

configurations to utilize Gandiva features optimally is an

open problem that we leave for future work.

At a high level, Gandiva can benefit an AutoML sys-

tem in two ways. First, Gandiva can help AutoML

explore more hyper-parameter configurations within a

timespan, thereby enabling it to find better models [10,

19, 11]. Alternatively, Gandiva can help AutoML find

a qualified model faster given a set of configurations

through prioritization.

To demonstrate the benefit of Gandiva in exploring

more configurations, we first use AutoML to run a multi-

job to tune a LeNet-like CNN model with multiple con-

volution layers and fully connected layers, trained with

the Cifar10 dataset. The hyper-parameters we search

have 12 dimensions, including learning rate, dropout

rate, number of layers, choice of optimization, etc. In this

Neural model Type Dataset

10%

InceptionV3 [46] CV ImageNet [18]
ResNet-50 [24] CV ImageNet
Alexnet [31] CV ImageNet
Vgg16 [44] CV ImageNet

60%

Bi-Att-Flow [42] NLP SQuAD [40]
LanguageModel [56] NLP PTB [34]
GNMT [51] NLP WMT16 [6]
Transformer [49] NLP WMT16

30%
Wavenet [48] Speech VCTK [54]
DeepSpeech [23] Speech CommonVoice [2]

Table 2: Neural models and the ratios in the trace.
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Figure 14: Model exploration number.

experiment, AutoML continually generates new hyper-

parameter configurations based on Hyperopt [10] and

leverages a curve-fitting method [19] to evaluate and pre-

dict the learning curve every 1,000 mini-batches (3% of

the total mini-batches [19]). Jobs with no promise (less

than 30% predicted accuracy) will be stopped early. The

multi-job runs on 4 (or 16) P40 GPUs and each job re-

quires 1 GPU. In the experiment, AutoML schedules 2

(or 8) more jobs every 1,000 mini-batches. In the base-

line, jobs have to stay in a FIFO queue waiting for the

running jobs to be terminated early or complete while in

Gandiva, they are scheduled with time-slicing and mi-

gration support.

Figure 14 shows the number of explored hyper-

parameter configurations. Gandiva can explore almost

10 times the number in the baseline approach in both

the 4-GPU and 16-GPU cases. This is because, in the

baseline approach, the GPUs can get “stuck” with a sub-

optimal set of jobs that need to be run to completion, but

in Gandiva, because of time-slicing, new configurations

can be explored in parallel along with those jobs.

To demonstrate the benefit of Gandiva in finding a

qualified model faster, we use Hyperopt to generate ran-

domly the same set of 374 hyper-parameter configura-

tions for both the baseline and Gandiva. The experiment

measures the time required to find a configuration with

at least 84% accuracy2. AutoML algorithms evaluate

the jobs every 1,000 mini-batches and re-prioritize them

based on the learning-curve prediction of their probabil-

ity to achieve 84% accuracy [19]. In Gandiva, the top M

jobs with the highest probabilities are then trained in the

GPUs exclusively. In this experiment, we set M to 2 and

8 for 4-GPU and 16-GPU cases. Other jobs run in a time

2The LeNet-like CNN model is small: 84% is the best accuracy we

found in the generated configurations.
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Position
93th
(25%)

187th
(50%)

280th
(75%)

365th
(98%)

4
GPUs

Baseline 691.5 1373.0 2067.2 2726.4
Gandiva 125.5 213.8 302.4 387.1
Speedup 5.51x 6.42x 6.84x 7.04x

16
GPUs

Baseline 253.0 492.7 731.7 970.0
Gandiva 74.4 103.7 135.4 162.6
Speedup 3.40x 4.75x 5.40x 5.96x

Table 3: Time to find a qualified configuration (minutes).

slicing manner. Our baseline approach stays the same as

in the previous experiment. The result shows that Gan-
diva achieves 7x speedup compared to the baseline for

the 4-GPU case and 6x for the 16-GPU case. More GPUs

benefit the baseline as it implicitly improves the degree

of parallelism of the long running jobs. There are two

factors contributing to these gains. First, with prioritiza-

tion, Gandiva grants more computation resources to the

promising jobs. Second, because of the ability to run

more configurations in parallel, Gandiva is able to find

promising jobs quickly based on early feedback.

Further study shows the first job with the qualified

configuration gets scheduled by Gandiva and the base-

line in the 365th place. We move the first qualified job

from 365th place to the first 25th percentile, 50th per-

centile, and 75th percentile scheduling place and rerun

the experiment. Table 3 summarizes the result: the later

the qualified configuration shown, the larger gain Gan-
diva has. In a typical AutoML experiment, quality mod-

els usually show up later as those early-stopped jobs’

configurations guide the system to find the better con-

figurations.

To understand the sensitivity of Gandiva’s perfor-

mance to the target accuracy of the model, we run Au-

toML with different target accuracies on a large state-of-

the-art ResNet-like model (the official ResNet example

in Keras [4]) for Cifar10. We use Hyperopt to gener-

ate 100 configurations, with the search space covering

both the neural network architecture and various tunable

hyper-parameters. The learning-curve prediction works

as before; i.e., for every 3% of total mini-batches. The

multi-job experiment runs on 16 P40 GPUs and every job

runs on 1 GPU.

Table 4 shows the time spent on finding a model that

is better than target accuracy using the baseline and Gan-
diva respectively. For a higher target accuracy, the per-

formance gain of Gandiva is more notable. With 90%

specified as a goal, the qualified model that is found

achieves 92.62% validation accuracy. However, if the

target accuracy is low; e.g., 70%, a qualified model will

appear early. In this case, the time for completing a sin-

gle qualified configuration run dominates the total Au-

toML search time. Thus, Gandiva shows little bene-

fit. We can see that when AutoML is used for achiev-

ing high accuracy models, Gandiva provides significant

gains over the baseline.

Accuracy 70% 80% 90%

Baseline 134.1 2849.1 5296.7

Gandiva 134.1 543.1 935.4

Speedup 1.00x 5.25x 5.66x

Position 15th 58th 87th

Table 4: Model searching in ResNet-like network (minutes).

Figure 15: Cluster GPU utilization.

6.3 Cluster experiments: time-slicing and
packing

In this section, we evaluate the Gandiva scheduler in a

45 server, 180-GPU cluster with about an equal mix of

P100 and P40 GPUs. The scheduler implements both

the reactive and introspective modes described earlier.

In order to understand the gains contributed by different

mechanisms in Gandiva, in this experiment, we only use

time-slicing and packing, and disallow migrations. Fur-

ther, none of the jobs are grow-shrink enabled. Thus, the

accuracy achieved during training is unaffected by the

Gandiva mechanisms.

We use the eight DLT jobs from Table 1 for this ex-

periment and derive a mix of these jobs such that aver-

age GPU utilization is about 50%, similar to the average

GPU utilization numbers reported from a study of a large

deep learning cluster [28]. DLT jobs 1 and 2 from Table 1

(low utilization) are chosen with 0.3 probability, jobs 3,

4, and 5 (mid utilization) are chosen with 0.25 probabil-

ity and jobs 6, 7, and 8 (high utilization) are chosen with

probability of 0.45. Further, jobs 7 and 8 require either 2

or 4 GPUs while the rest each uses 1-GPU.

The number of mini-batches for each of these jobs are

chosen such that, in isolation on P40, they take between

30 and 45 minutes of GPU time. A total of 1,000 jobs

drawn from the above distribution arrive in a uniformly

random manner over two hours. Using the same work-

load, we compare with Gandiva a baseline scheduler that

does bin-packing but does not oversubscribe.

The primary goal of Gandiva is early feedback. We

compute the average time to 100 mini-batches for all jobs

as a measure of early feedback (e.g., HyperBand [33]

uses 100 mini-batches to evaluate a job). We find that

the average time to complete 100 mini-batches is 498s

for Gandiva and 2,203s for the baseline, for a reduction

of 77%.
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The second goal of Gandiva is cluster efficiency. Fig-

ure 15 shows the average GPU utilization of the cluster

for the baseline scheduler and Gandiva, as well as the

cumulative number of successful packings by Gandiva
(right y-axis). The result shows clearly that Gandiva is

able to use the cluster more efficiently than the baseline.

The average utilization (computed over the stable regime

from 20 to 200 mins) achieved by Gandiva is 62.8%

compared to baseline average of 50.1%, resulting in a

26% relative improvement. Further, the greedy packing

heuristic employed by Gandiva can be seen to be mostly

successful with only a few packing decisions that need to

be undone (the packing curve is mostly increasing with

only small occasional dips).

6.4 Cluster experiments: time-slicing and
migration

Trace. We collect a 9-day real-world job trace on a

2,000 GPU production cluster at Microsoft. The trace in-

cludes over 8,800 DLT jobs from three categories: com-

puter vision (CV) (10%), Natural Language Processing

(NLP) (60%), and Speech (30%), according to user sur-

vey and log analysis. However, the data/code used by

these jobs are not available to us, due to security and pri-

vacy regulations. In their place, we pick 10 state-of-the-

art deep learning models from Github with 50,000+ stars

in total. The models are summarized in Table 2.

To synthesize a trace with similar characteristics as the

production cluster, we mix these models with the same

ratio as that in the trace. The number of mini-batches of

the jobs in the trace are set to follow the job running time

distribution of the 9-day real-world trace. We ensure

that the synthesized trace closely follows the job run-

ning time distribution of the real-world trace, as shown

in Figure 16. As before, none of the jobs are grow-shrink

enabled in this experiment, as the cluster is in high load.

We run the trace using Hadoop’s YARN capacity

scheduler [50] and our Gandiva scheduler.

Fast-forwarding. To speed up replaying the 9-day trace,

we leverage the predictability of the 10 models. We use

the scheduler to instruct a running job to skip a number

of mini-batches (i.e., fast-forwarding) whenever there are

no scheduling events, including job arrival, departure,

and migration, etc. The time skipped is calculated by

measuring the previous mini-batch performance when

the job reaches a stable state.

We validate fast-forwarding by constructing a 3-hour

trace and compute average job completion time (JCT)

and the makespan (the running time for the entire exper-

iment) for the full trace and the experiment with fast-

forwarding enabled using the capacity scheduler and

Gandiva. The difference between the real and fast-

forwarded experiment in all cases was less than 1%.

Avg. JCT
(mins)

Makespan
(mins)

Cap. Sche. 832 13371

Gandiva 656 11349

Improvement 26.8% 17.8%

Table 5: Full trace experiment with fast-forwarding

Table 5 shows the average job completion time and the

makespan for the two schedulers when replaying the syn-

thesized job trace in a cluster with 100 GPUs (50 P100,

50 P40). We see that Gandiva improves average JCT by

26.8% and the total makespan is reduced by 17.8%. Fig-

ure 17 shows the CDF of the JCT of the two approaches:

it shows Gandiva has more jobs with a JCT less than

around 100 mins. During the entire experiment, Gandiva
initiates migration 470 times; i.e., approximately once

every 20 minutes.

Multi-job performance in a shared cluster. To com-

pare the AutoML performance of a multi-job in a shared

environment, we run the synthesized trace the same way

as earlier in the same cluster with 100 GPUs. The trace-

driven jobs act as background jobs, emulating a realis-

tic shared cluster environment. At the 5,607th minute

(roughly in the middle of the trace), we launch two multi-

jobs, each to find a qualified CNN model described in

Section 6.2, trained on the Cifar10 dataset. Each multi-

job is allocated 8 GPUs. For fair comparison, each multi-

job is allowed to preempt other jobs to get 8 GPUs to

reduce the unpredictable resource sharing.

We are particularly interested in understanding the

effect of migration in Gandiva and therefore use a 2-

GPU VGG-like model that is large and locality sensi-

tive (Section 3.1). Each AutoML job runs for 100,000

mini-batches and reports the learning curve every 3,000

mini-batches (3%). Like the previous experiment, the

job can be early stopped if the learning shows no

promise [19]. In this experiment, the AutoML algorithm

tunes the learning rate of the model with 40 configura-

tions. The multi-job completes if a job’s model achieves

99.5% training accuracy, with 91.3% validation accu-

racy. Again, the top M highest probability jobs run ex-

clusively while other jobs are time-sliced. In this experi-

ment, we set M to 2 (i.e., 4 GPUs).

As shown in Figure 18, with the capacity scheduler,

it takes 1,215.74 and 1,110.62 mins, respectively, to

find the qualified configuration for the two multi-jobs.

Gandiva’s mechanisms like migration, time-slicing, and

dynamic priority help provide better locality, identify

promising jobs earlier, and improve the training speed

of high priority jobs. As a result, Gandiva achieves

a speedup of 13.6 and 12.9, respectively. Based on a

micro-benchmark we did, we observed that time-slicing

alone gave 7x gains for this AutoML experiment. Thus,

the rest of the gains are attributable to improved locality

due to migration. A real example of migration observed

in this experiment was shown in Figure 8.
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7 Related Work

DLT job scheduling today. DLT jobs are scheduled

today by big data schedulers such as Kubernetes or

YARN [12, 28]. In these systems, a fixed set of GPUs is
assigned exclusively for the lifetime of a DLT job. Thus,

job queueing times can vary from a few minutes [12] to

even hundreds of minutes [28] in these clusters.

An earlier study [28] shows that the average GPU uti-

lization in a production cluster was only around 52%.

Some jobs can inherently result in low GPU utilization

due to the use of small models [29] and/or the use of

small batch sizes for better generalization [35]. Fur-

ther, jobs with inherently high GPU utilization can be

adversely affected by poor GPU affinity and/or interfer-

ence.

Scheduling policies for machine learning. Recent re-

search [9, 15] also suggests that locality, interference,

and GPU utilization are important performance factors

for GPU workloads. They develop analytical models to

predict the performance of GPU workloads. A Gandiva
scheduler may leverage such models to guide its schedul-

ing decisions. At its core, Gandiva framework is de-

signed to empower DLT schedulers with the primitives

such as time-slicing and migration.

SLAQ [57] proposes a scheduling policy that priori-

tizes resources in a CPU-based cluster to Spark jobs with

high potentials (e.g., the one with a fast improving learn-

ing curve). Gandiva can leverage the same policy for

DLT on GPU clusters. Optimus [39] derives a proper

number of parameter-servers and workers for MxNet-

based deep learning jobs, which complements Gandiva
in GPU cluster scheduling.

AutoML. Gandiva enables the co-design of DLT sched-

ulers and AutoML algorithms like [10, 30]. Jobs in

a multi-job can be promoted dynamically with more

resource and/or better locality, accordingly to Au-

toML specific algorithms. Google Vizier [21], Hyper-

Drive [41], and TuPAQ [45] focus more on the sys-

tem design of AutoML. Gandiva empowers these sys-

tems with lower level system primitives that can further

improve AutoML training experience in a multi-job, as

shown in the experiments.

Big data cluster scheduling frameworks. Most recent

big data scheduling frameworks assume jobs are mod-

eled after a data flow graph (DFG) [26, 55, 13, 27, 20,

22]. Map/Reduce like tasks instantiated from the log-

ical DFG get scheduled dynamically according to the

job progress and the DFG dependency. Gandiva in-

stead relies on the micro-task boundary implicitly de-

fined by the mini-batch boundary. The low-level mech-

anisms of Gandiva such as time-slicing and migration

also differ significantly from those big data scheduling

systems [13, 22, 25, 14], while being surprisingly simi-

lar to a traditional operation system [47].

Time-slicing, suspend-resume, and process migra-
tion. Gandiva adopts traditional OS process primitives to

facilitate DLT scheduling [47]. Unlike the general pur-

pose OS mechanisms, Gandiva leverages the intra-job

predictability of DLT to achieve a highly efficient im-

plementation. Gandiva does not claim generality of the

proposed techniques to other application domains.

8 Conclusion

We present Gandiva, a cluster scheduling framework for

deep learning, which provides a set of efficient, low-level

system primitives such as time-slicing, migration, intra-

job elasticity, and dynamic priority. Using these primi-

tives, Gandiva can effectively support neural model ex-

ploration in a multi-job, finding accurate neural mod-

els up to an order of magnitude faster than using tra-

ditional schedulers in a realistic shared cluster environ-

ment. Gandiva provides an efficient implementation of

the proposed mechanisms by exploiting the intra-job pre-

dictability of DLT: our system prototype demonstrates

that job suspend/resume and migration can be achieved

under a second, even for cross-server migration for pop-

ular deep learning toolkits such as Tensorflow and Py-

Torch. Combined with an introspective scheduling pol-

icy, Gandiva improves overall cluster utilization by 26%.
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B. Algorithms for hyper-parameter optimization. In Advances
in Neural Information Processing Systems 24, J. Shawe-Taylor,

R. S. Zemel, P. L. Bartlett, F. Pereira, and K. Q. Weinberger, Eds.

Curran Associates, Inc., 2011, pp. 2546–2554.

[12] BOAG, S., DUBE, P., HERTA, B., HUMMER, W., ISHAKIAN,

V., JAYARAM, K., KALANTAR, M., MUTHUSAMY, V., NAG-

PURKAR, P., AND ROSENBERG, F. Scalable multi-framework

multi-tenant lifecycle management of deep learning training jobs.

In Workshop on ML Systems, NIPS (2017).

[13] BOUTIN, E., EKANAYAKE, J., LIN, W., SHI, B., ZHOU,

J., QIAN, Z., WU, M., AND ZHOU, L. Apollo: Scalable

and coordinated scheduling for cloud-scale computing. In 11th
USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI 14) (Broomfield, CO, 2014), USENIX Associ-

ation, pp. 285–300.

[14] BURNS, B., GRANT, B., OPPENHEIMER, D., BREWER, E.,

AND WILKES, J. Borg, omega, and kubernetes. ACM Queue
14 (2016), 70–93.

[15] CHEN, Q., YANG, H., GUO, M., KANNAN, R. S., MARS,

J., AND TANG, L. Prophet: Precise QoS prediction on non-

preemptive accelerators to improve utilization in warehouse-

scale computers. In Proceedings of the Twenty-Second Inter-
national Conference on Architectural Support for Programming
Languages and Operating Systems (New York, NY, USA, 2017),

ASPLOS ’17, ACM, pp. 17–32.

[16] CHEN, T., XU, B., ZHANG, C., AND GUESTRIN, C. Train-

ing deep nets with sublinear memory cost. arXiv preprint
arXiv:1604.06174 (2016).

[17] DEAN, J., AND GHEMAWAT, S. Mapreduce: Simplified data

processing on large clusters. Communications of the ACM 51, 1

(Jan. 2008), 107–113.

[18] DENG, J., DONG, W., SOCHER, R., LI, L.-J., LI, K., AND FEI-

FEI, L. Imagenet: A large-scale hierarchical image database.

In Computer Vision and Pattern Recognition, 2009. CVPR 2009.
IEEE Conference on (2009), IEEE, pp. 248–255.

[19] DOMHAN, T., SPRINGENBERG, J. T., AND HUTTER, F. Speed-

ing up automatic hyperparameter optimization of deep neural

networks by extrapolation of learning curves. In IJCAI (2015),

vol. 15, pp. 3460–8.

[20] GOG, I., SCHWARZKOPF, M., GLEAVE, A., WATSON, R.

N. M., AND HAND, S. Firmament: Fast, centralized cluster

scheduling at scale. In 12th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 16) (Savannah, GA,

2016), USENIX Association, pp. 99–115.

[21] GOLOVIN, D., SOLNIK, B., MOITRA, S., KOCHANSKI, G.,

KARRO, J., AND SCULLEY, D. Google Vizier: A service

for black-box optimization. In Proceedings of the 23rd ACM
SIGKDD International Conference on Knowledge Discovery and
Data Mining (2017), KDD ’17, pp. 1487–1495.

[22] GRANDL, R., KANDULA, S., RAO, S., AKELLA, A., AND

KULKARNI, J. GRAPHENE: Packing and dependency-aware

scheduling for data-parallel clusters. In 12th USENIX Sympo-
sium on Operating Systems Design and Implementation (OSDI
16) (Savannah, GA, 2016), USENIX Association, pp. 81–97.

[23] HANNUN, A., CASE, C., CASPER, J., CATANZARO, B., DI-

AMOS, G., ELSEN, E., PRENGER, R., SATHEESH, S., SEN-

GUPTA, S., COATES, A., ET AL. Deep speech: Scaling up

end-to-end speech recognition. arXiv preprint arXiv:1412.5567
(2014).

[24] HE, K., ZHANG, X., REN, S., AND SUN, J. Deep residual learn-

ing for image recognition. In Proceedings of the IEEE conference
on computer vision and pattern recognition (2016), pp. 770–778.

[25] HINDMAN, B., KONWINSKI, A., ZAHARIA, M., GHODSI, A.,

JOSEPH, A. D., KATZ, R. H., SHENKER, S., AND STOICA, I.

Mesos: A platform for fine-grained resource sharing in the data

center. In NSDI (2011), vol. 11, pp. 22–22.

[26] ISARD, M., BUDIU, M., YU, Y., BIRRELL, A., AND FET-

TERLY, D. Dryad: Distributed data-parallel programs from

sequential building blocks. In Proceedings of the 2Nd ACM
SIGOPS/EuroSys European Conference on Computer Systems
2007 (New York, NY, USA, 2007), EuroSys ’07, ACM, pp. 59–

72.

[27] ISARD, M., PRABHAKARAN, V., CURREY, J., WIEDER, U.,

TALWAR, K., AND GOLDBERG, A. Quincy: fair schedul-

ing for distributed computing clusters. In Proceedings of the
ACM SIGOPS 22nd symposium on Operating systems principles
(2009), ACM, pp. 261–276.

[28] JEON, M., VENKATARAMAN, S., QIAN, J., PHANISHAYEE, A.,

XIAO, W., AND YANG, F. Multi-tenant GPU clusters for deep

learning workloads: Analysis and implications. MSR-TR-2018-
13 (2018).

[29] KINGMA, D. P., AND WELLING, M. Stochastic gradient VB and

the variational auto-encoder. In Second International Conference
on Learning Representations, ICLR (2014).

[30] KLEIN, A., FALKNER, S., SPRINGENBERG, J. T., AND HUT-

TER, F. Learning curve prediction with bayesian neural networks.

[31] KRIZHEVSKY, A., SUTSKEVER, I., AND HINTON, G. E. Im-

agenet classification with deep convolutional neural networks.

In Advances in neural information processing systems (2012),

pp. 1097–1105.

[32] LECUN, Y., BENGIO, Y., AND HINTON, G. Deep learning. na-
ture 521, 7553 (2015), 436.

[33] LI, L., JAMIESON, K., DESALVO, G., ROSTAMIZADEH,

A., AND TALWALKAR, A. Hyperband: A novel bandit-

based approach to hyperparameter optimization. arXiv preprint
arXiv:1603.06560 (2016).

[34] MARCUS, M. P., MARCINKIEWICZ, M. A., AND SANTORINI,

B. Building a large annotated corpus of English: The penn tree-

bank. Computational linguistics 19, 2 (1993), 313–330.

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation    609



[35] MASTERS, D., AND LUSCHI, C. Revisiting small batch train-

ing for deep neural networks. arXiv preprint arXiv:1804.07612
(2018).

[36] MIIKKULAINEN, R., LIANG, J., MEYERSON, E., RAWAL,

A., FINK, D., FRANCON, O., RAJU, B., SHAHRZAD, H.,

NAVRUZYAN, A., DUFFY, N., ET AL. Evolving deep neural

networks. arXiv preprint arXiv:1703.00548 (2017).

[37] MIKOLOV, T., JOULIN, A., CHOPRA, S., MATHIEU, M., AND

RANZATO, M. Learning longer memory in recurrent neural net-

works. arXiv preprint arXiv:1412.7753 (2014).

[38] PASZKE, A., GROSS, S., CHINTALA, S., AND CHANAN, G.

PyTorch, 2017.

[39] PENG, Y., BAO, Y., CHEN, Y., WU, C., AND GUO, C. Opti-

mus: An efficient dynamic resource scheduler for deep learning

clusters. In Proceedings of the Thirteenth European Conference
on Computer Systems (2018), ACM.

[40] RAJPURKAR, P., ZHANG, J., LOPYREV, K., AND LIANG, P.

Squad: 100,000+ questions for machine comprehension of text.

arXiv preprint arXiv:1606.05250 (2016).

[41] RASLEY, J., HE, Y., YAN, F., RUWASE, O., AND FONSECA, R.

HyperDrive: Exploring hyperparameters with POP scheduling.

In Proceedings of the 18th International Middleware Conference,
Middleware (2017), vol. 17.

[42] SEO, M., KEMBHAVI, A., FARHADI, A., AND HAJISHIRZI, H.

Bidirectional attention flow for machine comprehension. arXiv
preprint arXiv:1611.01603 (2016).

[43] SHI, W., CABALLERO, J., HUSZÁR, F., TOTZ, J., AITKEN,
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