
APACHE FLINKTM
STREAM AND BATCH PROCESSING IN

A SINGLE ENGINE

Akshaya Kalyanaraman

WHAT IS APACHE FLINK?

Batch Processing

process static and
historic data

Data Stream
Processing

realtime results
from data streams

Event-driven
Applications

data-driven actions
and services

MOTIVATION

•  In Lambda Architecture: Two separate execution engines for batch and streaming

• Unification of Batch and Stream Processing in a single framework, Flink.

• Apache Flink provides a highly flexible windowing mechanism.

•  Flink supports different notions of time.

STREAM ANALYTICS

NOTIONS OF TIME
Event Time

Time when event happened.
12:23 am

1:37 pm

Processing Time

Time measured by system clock

STATEFUL STREAMING
Stateless Stream

Processing
Stateful Stream

Processing

Op Op

State

PROCESSING
 SEMANTICS

At-least once
May over-count after

failure

Exactly Once
Correct counts after

failures

End-to-end exactly once
Correct counts in external system (e.g. DB, file system)

after failure

PROCESSING

SEMANTICS

Flink guarantees exactly once

End-to-end exactly once with
specific sources and sinks (e.g. Kafka
-> Flink -> HDFS)

Internally, Flink periodically takes
consistent snapshots of the state
without ever stopping computation

WINDOWING
•  Window configured using assigner and optionally trigger and evictor.

•  Assigner: assigns each record to logical windows.

•  Trigger: defines when the operation associated with the window definition is performed.

•  Evictor: determines which records to retain within each window.

WINDOWING :
EXAMPLE

•  Below is a window definition with a range of 6 seconds
that slides every 2 seconds (the assigner).

•  The window results are computed once the watermark
passes the end of the window (the trigger).

 stream

 .window(SlidingTimeWindows.of(Time.of(6,

 SECONDS), Time.of(2, SECONDS))

 .trigger(EventTimeTrigger.create())

WINDOWING :
EXAMPLE

•  A global window creates a single logical group.
•  The example defines a global window (i.e., the assigner)

that invokes the operation on every 1000 events (i.e., the
trigger) while keeping the last 100 elements (i.e., the
evictor).

 stream

 .window(GlobalWindow.create())

 .trigger(Count.of(1000))

 .evict(Count.of(100))

Deployment Local
Single JVM

Cluster
Standalone,YARN, Mesos

Cloud
AWS, Google

Core
Runtime

Distributed Streaming Dataflow

DataSet API
Batch Processing

FLINK STACK

DataStream API
Stream Processing

API
&

Libraries

FlinkML
Machine Learning

Gelly
Graph Processing

Table
Relational

CEP
Event Processing

Table
Relational

FLINK PROCESS MODEL

JobManager

Master

Client

TaskManager
Worker

TaskManager
Worker

TaskManager
Worker

TaskManager
Worker

User System

public class WordCount {

public static void main(String[] args) throws Exception {
// Flink’s entry point
StreamExecutionEnvironment env = StreamExecutionEnvironment

.getExecutionEnvironment();

DataStream<String> data = env.fromElements(
"O Romeo, Romeo! wherefore art thou Romeo?",
"Deny thy father and refuse thy name",
"Or, if thou wilt not, be but sworn my love,",
"And I'll no longer be a Capulet.");

// Split by whitespace to (word, 1) and sum up ones
DataStream<Tuple2<String, Integer>> counts = data

.flatMap(new SplitByWhitespace())

.keyBy(0)

.timeWindow(Time.of(10, TimeUnit.SECONDS))

.sum(1);

counts.print();

// Today: What happens now?
env.execute();

}
}

Submit
Program

Schedule

Execute

CLIENT

Translates the API code to
a data flow graph called JobGraph and

submits it to the JobManager.

Source

Transform

Sink

public class WordCount {

public static void main(String[] args) throws Exception {
// Flink’s entry point
StreamExecutionEnvironment env = StreamExecutionEnvironment

.getExecutionEnvironment();

DataStream<String> data = env.fromElements(

"O Romeo, Romeo! wherefore art thou Romeo?",
"Deny thy father and refuse thy name",
"Or, if thou wilt not, be but sworn my love,",
"And I'll no longer be a Capulet.");

// Split by whitespace to (word, 1) and sum up ones

DataStream<Tuple2<String, Integer>> counts = data
.flatMap(new SplitByWhitespace())
.keyBy(0)
.timeWindow(Time.of(10, TimeUnit.SECONDS))
.sum(1);

counts.print();

// Today: What happens
now? env.execute();

}

}

Translate

JOBMANAGER
• All coordination via JobManager (master):

•

•

•

Scheduling programs for execution
Checkpoint coordination
Monitoring workers

Actor System

Scheduling

Checkpoint Coordination

TASK MANAGER

11

Task Slot Task Slot Task Slot Task Slot

Actor System

• All data processing in TaskManager (worker):

•  Communicate with JobManager via Actor messages
•  Exchange data between themselves via dedicated data

connections
•  Expose task slots for execution

I/O Manager

Memory Manager

SCHEDULING

12

•
•
•

Each ExecutionVertex will be executed one or more times
The JobManager maps Execution to task slots
Pipelined execution in same slot where applicable

p=4 p=4 p=3

All to all Pointwise

TaskManager 1 TaskManager 2

SAMPLE QUERY

•  dataStream

•  count = input.map {m.split(”1")};

•  .keyBy(count%2); //keys by odd count (1) or even count (0)

•  .window(TumblingEventTimeWindows.of(Time.seconds(3)));

•  .apply (new CoGroupFunction () {...});

•  .reduce(count);

SCHEDULING

E X E C U T I O N
I N S L O T S

Map Pipelined
Result

1101
0101
0100

PIPELINED RESULTS

1101
0101

Map Pipelined
Result 1101 0101

0100

PIPELINED RESULTS

1101
0101

Map Pipelined
Result

3
0101
0100

PIPELINED RESULTS

1101
0101

Map Pipelined
Result KeyBy

3
0101
0100

PIPELINED RESULTS

1101
0101

Map Pipelined
Result KeyBy

3
0101
0100

PIPELINED RESULTS

1101
0101

Map Pipelined
Result KeyBy

3
0101

0100

PIPELINED RESULTS

1101
0101

Map Pipelined
Result KeyBy

Odd (1 record)

0101
0100

PIPELINED RESULTS

1101
0101

Map Pipelined
Result KeyBy

2

0100

PIPELINED RESULTS

1101
0101

Odd (1 record)

Map Pipelined
Result KeyBy

0100

PIPELINED RESULTS

1101
0101

2 2

Odd (1 record)

Map Pipelined
Result Reduce

0100

PIPELINED RESULTS

1101
0101

Odd (1 record)

Even (1 record)

Map Pipelined
Result Reduce

1101
0101

1

PIPELINED RESULTS

1101
0101

Odd (1 record)

Even (1 record)

Map Pipelined
Result Reduce

1101
0101

1

PIPELINED RESULTS

1101

0101

Odd (1 record)

Even (1 record)

Map Pipelined
Result Reduce

1101
0101

PIPELINED RESULTS

1101

0101

Odd (2 records)

Even (1 record)

Map Pipelined
Result Reduce

PIPELINED RESULTS

3

0101

Odd (2 records)

Even (1 record)

Map Pipelined
Result Reduce

PIPELINED RESULTS

3 0101

Odd (2 records)

Even (1 record)

Map Pipelined
Result Reduce

PIPELINED RESULTS

0101
Odd (3 records)

Even (1 record)

Map Pipelined
Result Reduce

PIPELINED RESULTS

2

Odd (3 records)

Even (1 record)

Map Pipelined
Result Reduce

PIPELINED RESULTS

Odd (3 records)

Even (2 records)

LATENCY AND THROUGHPUT
•  When a data record is ready on the producer side, it is serialized and split into one or

more buffers.

•  A buffer is sent to a consumer either when it is full or when a timeout condition is
reached.

•  High throughput and low latency is achieved.

LATENCY AND THROUGHPUT

FAULT TOLERANCE
ASYNCHRONOUS BARRIER SNAPSHOTTING

 •  An operator receives barriers from upstream and first performs an alignment phase.

•  Then, the operator writes its state to durable storage.

•  Once the state has been backed up, the operator forwards the barrier downstream.

•  Eventually, all operators will register a snapshot of their state and a global snapshot will be
complete.

FAULT TOLERANCE

COMPARISON
WITH NAIAD

•  Both Flink and Naiad make use of snapshotting mechanism for fault
tolerance.

•  Both Apache Flink and Naiad frameworks combine batch processing and
stream processing.

•  Both the frameworks support high throughput and low latency.

•  NAIAD performs iterative and incremental computations, while Flink
performs primarily data processing of stream and batch data.

CONCLUSION

•  Apache Flink is designed to perform both stream and batch analytics.

•  The streaming API provides the means to keep recoverable state and to partition,
transform, and aggregate data stream windows.

•  Flink treats batch computations by optimizing their execution using a query optimizer.

QUESTIONS?

