
Chi:A Scalable and Programmable Control
Plane for Distributed Stream Processing
Systems

Samhith Venkatesh
11/06/2018

Agenda

●  Introduction
●  Challenges
●  Motivation
●  Problem
●  Background
●  Design
●  Implementation
●  Evaluation

Introduction

Characteristics

 Spatial Variability Temporal Variability

Challenges

●  Different Service Level Objectives

●  Different expectations

●  Usability vs Flexibility

Problem

Meet various objectives

1.  Dynamic Scaling
2.  Auto – Tuning
3.  Data Skew Management

Heron and Flink lack flexibility

How to solve?

1.  Efficient and extensible feedback-loop controls
2.  Easy control interface
3.  Minimal impact on the process

Background

Control plane: The control plane is the part of a network that
carries signalling traffic and is responsible for routing.
Functions of the control plane include system configuration
and management

Data plane: The data plane is the part of a network that carries
user traffic. Data plane traffic travels through routers, rather
than to or from them.

Streaming solutions: Naiad , StreamScope and
Apache Flink

Dataflow Computation Model:

A dataflow program is a graph, where nodes represent
operations and edges represent data paths.

Each node in the graph is represented by triples
(sv, fv, pv)

sv : states of the vertex
fv : defines the function which captures computation
pv : properties associated with the vertex

Design

●  Installable controller and
operator API

●  Define new custom control
operations

●  Minimum effort

Design

Embedding the control plane into the data plane

●  Uses existing efficient data plane infrastructure
●  No need of global synchronization
●  Facilitate development of various asynchronous control operations

Overview

Control Operation: We can consider this as one feedback cycle comprising of a
dataflow controller and the dataflow topology

Stages involved

●  Control decision and instantiation
●  Propagation of control messages along with data
●  Control message reaches back to controller for post processing

Example: Word Count

●  Two map operators {M1,M2}
●  Two reduce operators {R1,R2}
●  R1 maintains the counts for all words

starting with [‘a’-‘l’], and R2 maintains
those for [‘m’-‘z’].

●  Controller monitors the memory usage What happens when we have to scale the service?

Control Decision and Instantiation

●  Controller detects and makes
reconfiguration decision

●  Start new reducer R3
○  R1 - [‘a’-‘h’]
○  R2 - [‘i’-‘p’]
○  R3 - [‘q’-‘z’]

●  Broadcast control message to all source
nodes

Control message propagation

●  M1 and M2 receive and they block input channel and
update their routing table.

●  R1 and R2 receive and splits data
○  R1 - [‘a’-‘h’] and [‘i’-‘l’]
○  R2 - [‘m’-‘p’] and [‘q’-‘z’]

●  Passes the information along with the control message
○  R1 - [‘i’-‘l’]
○  R2 - [‘m’-‘p’]

Control message lifecycle

Graph Transition

Introduce a meta topology G`, to complete the
transformation asynchronously.

State Invariance : No change in node’s state, hence we
collapse and merge

Acyclic Invariance: Aggressive merge old and new
topology

●  Check for loops before and after

Operating at scale

●  Multiple Controllers - concurrently run on multiple controllers at various stages.
Also facilitate global controller

●  Aggregation (Spanning trees) to avoid bottlenecks at source and sinks
●  To deal with deadlocks we have separate queues
●  Fault tolerance

○  Retransmission until acknowledgement
○  Timeout and restart mechanism in-case of network failure
○  Checkpoint and replay mechanism for operator and controller failures

Implementation

Evaluation

Synchronous Global
Control Models

Asynchronous Local
Control Models

Chi

Consistency Barrier None Barrier / None

Semantic Simple Hard Simple

Latency High Low Low

Overhead High Implementation –
dependent

Low

Scalability Implementation –
dependent

Implementation –
dependent

High

Thank You

