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Challenges

e Different Service Level Objectives

e Different expectations

e Usability vs Flexibility




Problem

Meet various objectives

1. Dynamic Scaling
2. Auto — Tuning
3. Data Skew Management

Heron and Flink lack flexibility



How to solve?
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1. Efficient and extensible feedback-loop controls

2. Easy control interface
3. Minimal impact on the process



Background

Control plane: The control plane is the part of a network that

carries signalling traffic and is responsible for routing.
Functions of the control plane include system configuration
and management

Data plane: The data plane is the part of a network that carries
user traffic. Data plane traffic travels through routers, rather
than to or from them.
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Streaming solutions: Naiad , StreamScope and

Apache Flink

Dataflow Computation Model:
branch_a = follow_branch_a

A dataflow program is a graph, where nodes represent

operations and edges represent data paths. _+ branch.b — follow_branch_ b ~,
Each node in the graph is represented by triples fun_this_first = branching join
(s, f,p,) ™ branch.c = follow_branch.c -

s, : states of the vertex branch_d = follow_branch_d

f, : defines the function which captures computation
p, : properties associated with the vertex



Design

e Installable controller and
operator API

e Define new custom control
operations

e Minimum effort
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Design

Embedding the control plane into the data plane

e Uses existing efficient data plane infrastructure
e No need of global synchronization
e Facilitate development of various asynchronous control operations



Overview

Control Operation: We can consider this as one feedback cycle comprising of a
dataflow controller and the dataflow topology

Stages involved

e Control decision and instantiation
e Propagation of control messages along with data
e Control message reaches back to controller for post processing



Example: Word Count

Two map operators {M1,M2}
Two reduce operators {R1,R2}

e R1 maintains the counts for all words
starting with [‘a’-‘1’], and R2 maintains
those for [‘'m’-‘z’].

e (Controller monitors the memory usage

Controller State
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What happens when we have to scale the service?



Control Decision and Instantiation

e Controller detects and makes
reconfiguration decision

e Start new reducer R3 ~ o
O Rl _ [‘a9_‘h,] @ @
O RZ _ [‘i,_‘p9] x
O R3 _ [‘q,—‘Z, @ @

e Broadcast control message to all source
nodes



Control message propagation

e MI and M2 receive and they block input channel and
update their routing table.
e RI1 and R2 receive and splits data
o RI-[‘a’-‘h’]and [‘1’-]’]
o R2-[‘m’-‘p’]land[‘q’-‘Z’]
e Passes the information along with the control message
o RI1-[71-1]
o R2-[m-p’]




Control message lifecycle
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Graph Transition

Introduce a meta topology G, to complete the
transformation asynchronously.

State Invariance : No change in node’s state, hence we

collapse and merge

Acyclic Invariance: Aggressive merge old and new

topology

e s’

e Check for loops before and after (3) Acyciic invariance pruning



Operating at scale

e Multiple Controllers - concurrently run on multiple controllers at various stages.
Also facilitate global controller

e Aggregation (Spanning trees) to avoid bottlenecks at source and sinks

e To deal with deadlocks we have separate queues

e Fault tolerance
o Retransmission until acknowledgement
o Timeout and restart mechanism in-case of network failure
o Checkpoint and replay mechanism for operator and controller failures



Implementation
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Evaluation
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