Chi: A Scalable and Programmable Control
Plane for Distributed Stream Processing
Systems

Samhith Venkatesh
11/06/2018

Agenda

Introduction
Challenges
Motivation
Problem
Background
Design
Implementation
Evaluation

Introduction

Data
Sources

Events & kafka

Logs $ lace Systams
Sensor Data

Social Q

Databases

W b’

Real-time
analytics on
data in motion

Visualization

Characteristics

Loy by a4

»\\omm o madel
Aedo eva ——
s |}‘l ol freck | .3W3C Consortium -~

Umvcrsnty .. foundatlon

OWL fmstimriic® Linked RDF.

h&?{{« S em antl C Wlklp(edrla [«F{ameworf

SPARQL AuTh o Op?ﬂ i I° d, o
Icn'ogDBpedla nowledge
Descnptlon Wide

2Data PV -
~adata

also
open ‘ ;m

Spatial Variability

Temporal Variability

Challenges

e Different Service Level Objectives

e Different expectations

e Usability vs Flexibility

Problem

Meet various objectives

1. Dynamic Scaling
2. Auto — Tuning
3. Data Skew Management

Heron and Flink lack flexibility

How to solve?

Input —D-‘ Process —’| Output ’—'—

\T Feedback

1. Efficient and extensible feedback-loop controls

2. Easy control interface
3. Minimal impact on the process

Background

Control plane: The control plane is the part of a network that

carries signalling traffic and is responsible for routing.
Functions of the control plane include system configuration
and management

Data plane: The data plane is the part of a network that carries
user traffic. Data plane traffic travels through routers, rather
than to or from them.

Control-plane

Data-plane Control-plane

Data-plane

Control-plane

Data-plane

Streaming solutions: Naiad , StreamScope and

Apache Flink

Dataflow Computation Model:
branch_a = follow_branch_a

A dataflow program is a graph, where nodes represent

operations and edges represent data paths. _+ branch.b — follow_branch_ b ~,
Each node in the graph is represented by triples fun_this_first = branching join
(s, f,p,) ™ branch.c = follow_branch.c -

s, : states of the vertex branch_d = follow_branch_d

f, : defines the function which captures computation
p, : properties associated with the vertex

Design

e Installable controller and
operator API

e Define new custom control
operations

e Minimum effort

Receive next CM

Event — Make control decision + |nvoke OnNextAlCOnm)"erO

* Invoke OnlnitAtController() Complete giobal control

i + (Optional) Block inputchannel X .
Action——>", &-cadcastCMs o source nodes (Op \)‘ P Invoke OnDisposeAtController()
N '
Initialized ———————— Prepaing — Disposing ————®
& nifialize recavelrecy o repaning < Disposing

+ Invoke OnBeginAtController()
c " + Invoke OnNextAtController()
ontroller CM-ControlMessage * (Optional) Block inputchannel

Receiveall CMs
+ Invoke OnCompleteAtController()

CM- Control Message Receive all CMs
Operator 1 Invoke OnCompleteAtOperator()
¢ » Preparing » Disposing »
Receivefirst CM g N
+_ Invoke OnBeginAtOperator(" Receivenext CH Complete global control

+ Invoke OnNextAtOperator()
+ (Optional) Block inputchannel

+ BroadcastCMs to outputchannels

* Inoke OnexAperator) + Invoke OnDisposeAtOperator()

+ (Optional) Block inputchannel

Design

Embedding the control plane into the data plane

e Uses existing efficient data plane infrastructure
e No need of global synchronization
e Facilitate development of various asynchronous control operations

Overview

Control Operation: We can consider this as one feedback cycle comprising of a
dataflow controller and the dataflow topology

Stages involved

e Control decision and instantiation
e Propagation of control messages along with data
e Control message reaches back to controller for post processing

Example: Word Count

Two map operators {M1,M2}
Two reduce operators {R1,R2}

e R1 maintains the counts for all words
starting with [‘a’-‘1’], and R2 maintains
those for [‘'m’-‘z’].

e (Controller monitors the memory usage

Controller State

© [xz
0 @A
0 @R

What happens when we have to scale the service?

Control Decision and Instantiation

e Controller detects and makes
reconfiguration decision

e Start new reducer R3 ~ o
O Rl _ [‘a9_‘h,] @ @
O RZ _ [‘i,_‘p9] x
O R3 _ [‘q,—‘Z, @ @

e Broadcast control message to all source
nodes

Control message propagation

e MI and M2 receive and they block input channel and
update their routing table.
e RI1 and R2 receive and splits data
o RI-[‘a’-‘h’]and [‘1’-]’]
o R2-[‘m’-‘p’]land[‘q’-‘Z’]
e Passes the information along with the control message
o RI1-[71-1]
o R2-[m-p’]

Control message lifecycle

Controller State

@ e 7 0 @ © © @
5 @S @vw D) @v‘e»@ D) O®
. e L 27 20 ° @lw O

(1) Operator (I () V) (V))
Lifecycle ,(Configuration) . . .
Controller '
Mapper M1/M2
Reducer R1/R2

Reducer R3 .

' (Configuration)

Graph Transition

Introduce a meta topology G, to complete the
transformation asynchronously.

State Invariance : No change in node’s state, hence we

collapse and merge

Acyclic Invariance: Aggressive merge old and new

topology

e s’

e Check for loops before and after (3) Acyciic invariance pruning

Operating at scale

e Multiple Controllers - concurrently run on multiple controllers at various stages.
Also facilitate global controller

e Aggregation (Spanning trees) to avoid bottlenecks at source and sinks

e To deal with deadlocks we have separate queues

e Fault tolerance
o Retransmission until acknowledgement
o Timeout and restart mechanism in-case of network failure
o Checkpoint and replay mechanism for operator and controller failures

Implementation

Data Message Control Message Configuration Program Field
Metadata _—
con \
s wm : S Control Data
& v £ Processor Processor
32bit Version
savit___Previous Sequence ID Control Messages \\ /y Data Messages
64bit Sequence ID
Control Payload . .
contol 1o Dispatcher / Multiplexer
<Empty> Control ry M
Con tion:
(Crostad vy crbober l essages
Data Payload
ProcessingLogic Customizable Communication Layer
- g

-W) e 11 Binary data

Evaluation

Synchronous Global Asynchronous Local Chi
Control Models Control Models

Consistency
Semantic
Latency

Overhead

Scalability

Barrier
Simple
High
High

Implementation —
dependent

None
Hard
Low

Implementation —
dependent

Implementation —
dependent

Barrier / None
Simple
Low

Low

High

Thank You

