
COZ : Finding Code that Counts 
with Causal Profiling 

Anuja Golechha



Agenda

• Profiling
• Issues with current profilers
• Causal profiling
• COZ – Overview and Implementation
• COZ Evaluation
• Comparison with Pivot Tracing



Profiling

• Profiler Types
• Instrumentation
• Sampling



Issues with current profilers

• Only report how long code runs for

• Code that runs for a long time might not be the best choice for 
optimization
• Example – loading animation during file download

• Do not report potential impact of optimization



Example Application



Example Application – Speed up Search



Example Application – Speed up Save



Causal Profiling – Virtual Speedup



Example Application – Virtual Speedup Send



Example Application – Virtual Speedup Send



Example Application – Virtual Speedup Send



Example Application – Virtual Speedup 
Compress



Example Application



Causal Profiling

• Performance experiments
• Associated with a line of code and a percent speedup value

• Progress Points – View effect of optimization on both throughput and 
latency
• Progress point – a line of code indicating the end of a unit of work
• Throughput – measured by rate of visits to each progress point
• Latency – use two progress points

• Difference between counts at start and end points gives how many requests are 
currently in progress

• Rate of visits to the start point gives the arrival rate
• Little’s Law – average latency = number of requests in progress / arrival rate



COZ

• Prototype for Linux

• Implementation Details
• Dedicated profiler thread
• Flexibility – User can specify a scope to control which lines are considered for 

potential optimizations



COZ - Causal Profiling Overview

• Profiler Startup
• Map instructions to source code using the program’s debug information
• Create profiler thread

• Performance Experiment Initialization
• Randomly choose a line and a percent speedup

• Apply Virtual Speedup
• Pause other threads if sample belongs to selected line of code

• Experiment end
• Pre-determined time
• Cooloff period



COZ Virtual Speedup Implementation

Uses Sampling

s – number of samples of selected line
P – sampling period
n – number of times selected line is 
executed
d - delay



COZ Virtual Speedup Implementation

• Pauses other threads using counters
• Global counter – the number of times each thread should have 

paused
• Local counter – the number of times a thread has already paused
• Thread must pause and increment local counter if local < global
• Suspended threads – Thread must execute all required delays before 

a potential blocking operation or waking up another thread



COZ Evaluation – Types of Optimizations

• Identifying bottleneck
• Dedup – hash bucket traversal (8.9 % actual, 9% predicted)
• SQLite – overhead of indirect function calls (25 %)

• Reallocation of resources based on COZ’s predicted impact
• Ferret – reallocation of threads across stages (21.2 % actual, 21.4% predicted)

• Points of Contention – downward sloping causal profile
• Fluidanimate – replaced custom barrier by default (37 %)
• Memcached – removed lock while updating reference counts (9 %)



COZ Evaluation – Overhead

• Average – 17.6 % overhead
• Possible optimizations to improve 

overhead –
• Collect and process debug 

information lazily to reduce startup 
overhead

• Amortize sampling cost by sampling 
globally instead of per-thread

• Reduce delay overhead by allowing 
normal execution between 
experiments for some time



Comparison with Pivot Tracing

• Type
• Sampling vs Dynamic Instrumentation

• Causality
• COZ – Effect of optimization on total runtime / throughput / latency
• PT – Correlation between events (abstraction of happened-before joins)

• PT – For distributed systems

• COZ – Focuses on CPU usage



References

• https://www.sigops.org/s/conferences/sosp/2015/current/2015-
Monterey/printable/090-curtsinger.pdf
• https://www.usenix.org/node/196222
• https://github.com/plasma-umass/coz
• http://sigops.org/s/conferences/sosp/2015/current/2015-

Monterey/printable/122-mace.pdf 
• http://pivottracing.io/ 
• https://en.wikipedia.org/wiki/Profiling_(computer_programming)



Thank You


