COZ : Finding Code that Counts
with Causal Profiling

Anuja Golechha

Agenda

* Profiling

* Issues with current profilers

e Causal profiling

* COZ - Overview and Implementation
e COZ Evaluation

* Comparison with Pivot Tracing

Profiling

* Profiler Types /4

------------ SOULCEmmmmmmmmmmmmmmmmmmeee—aee COUNt */
* |nstrumentation 0001 IF X = "A" 0055
 Sampling 0002 THEN DO
0003 ADD 1 to XCOUNT 0032
0004 ELSE

0005 IF X = "B" 0055

Issues with current profilers

* Only report how long code runs for

* Code that runs for a long time might not be the best choice for
optimization
 Example — loading animation during file download

* Do not report potential impact of optimization

Example Application

=

>

vl

Causal Profile

m Speedup

o

-

Vo
-

?

Vo
-

O O

If you speed up . this much

The program will run this much faster

Q
=]
#]

Example Application — Speed up Search

] [
—».—»ﬂ |G—> 4 | Q
Q - /

Speeding up [Q| by this much... More speedup in|Q
speeds up the program by this much. leads to a larger program’speedup.

&0

el

Example Application — Speed up Save

e

No program speedup

Causal Profiling — Virtual Speedup

Ilustration of Virtual Speedup
(a) Original Program

t1

t2

|

A

iginal runti
(b) Actual Speedup original runtime

t1

original runtime
+

nf'd

|

t2

(c) Virtual Speedup effect of optimizing . by d

t1

t2

Example Application — Virtual Speedup Send

“Speed up” [4| by slowing everything else down.

-0+- »B-G—o—»
]

Each time || runs, pause all other threads.

Example Application — Virtual Speedup Send

“Speed up” || by slowing everything else down.
o]

iS4 Q |
speeds up the program by this much.

Speeding up |4| by this much...

Example Application — Virtual Speedup Send

N
t-»eﬂe»li ‘

A larger speedup has no additional effect

A

Example Application — Virtual Speedup
Compress

“Speed up” . by slowing everything else down.

-8
_>- a4 qQ e J

Each time . runs, pause all other threads.

: -

Example Application

Speedup Results

Program Speedup

? | Speedup

=] [6l A [0

Causal Profiling

* Performance experiments
* Associated with a line of code and a percent speedup value

* Progress Points — View effect of optimization on both throughput and
latency
* Progress point — a line of code indicating the end of a unit of work
* Throughput — measured by rate of visits to each progress point

 Latency — use two progress points

* Difference between counts at start and end points gives how many requests are
currently in progress

* Rate of visits to the start point gives the arrival rate
* Little’s Law — average latency = number of requests in progress / arrival rate

COZ

* Prototype for Linux

* Implementation Details
* Dedicated profiler thread

* Flexibility — User can specify a scope to control which lines are considered for
potential optimizations

COZ - Causal Profiling Overview

* Profiler Startup
* Map instructions to source code using the program’s debug information
* Create profiler thread

* Performance Experiment Initialization
 Randomly choose a line and a percent speedup

* Apply Virtual Speedup

* Pause other threads if sample belongs to selected line of code

* Experiment end
* Pre-determined time
e Cooloff period

COZ Virtual Speedup Implementation

Uses Sampling

st
TP
s — number of samples of selected line
P —sampling period (n—s)f4s-(f—d)
n —number of times selected line is N n |
executed
d - delay

COZ Virtual Speedup Implementation

* Pauses other threads using counters

* Global counter — the number of times each thread should have
paused

* Local counter —the number of times a thread has already paused
* Thread must pause and increment local counter if local < global

* Suspended threads — Thread must execute all required delays before
a potential blocking operation or waking up another thread

COZ Evaluation — Types of Optimizations

* |dentifying bottleneck
e Dedup — hash bucket traversal (8.9 % actual, 9% predicted)
e SQLite — overhead of indirect function calls (25 %)

* Reallocation of resources based on COZ’s predicted impact
* Ferret — reallocation of threads across stages (21.2 % actual, 21.4% predicted)

* Points of Contention — downward sloping causal profile
* Fluidanimate — replaced custom barrier by default (37 %)
 Memcached — removed lock while updating reference counts (9 %)

COZ Evaluation — Overhead

* Average —17.6 % overhead Overhead of COZ
<
» Possible optimizations to improve £
overhead - g%
* Collect and process debug § i
information lazily to reduce startup g W= —=m e T EE e TTT--—
ove rhe.ad | | »O\@%\@ae\\\\éb\&b@&é@\f\\@e \\,\\\\a \{}Q@R\\}%@ ,.\@% S
* Amortize sampling cost by sampling FHF T TFHSE S
globally instead of per-thread & i &0
* Reduce delay overhead by allowing Benchmark

normal execution between

experiments for some time Delays [i Sampling [l Startup

Comparison with Pivot Tracing

* Type

* Sampling vs Dynamic Instrumentation

e Causality
e COZ - Effect of optimization on total runtime / throughput / latency
 PT — Correlation between events (abstraction of happened-before joins)

* PT — For distributed systems

* COZ — Focuses on CPU usage

References

* https://www.sigops.org/s/conferences/sosp/2015/current/2015-
Monterey/printable/090-curtsinger.pdf

* https://www.usenix.org/node/196222
* https://github.com/plasma-umass/coz

* http://sigops.org/s/conferences/sosp/2015/current/2015-
Monterey/printable/122-mace.pdf

* http://pivottracing.io/
* https://en.wikipedia.org/wiki/Profiling_(computer programming)

Thank You

