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MOTIVATION

RDMA is great! We can build fast distributed stores!
Existing systems all use |-sided RDMA
- Need for multiple round trips for B-Trees etc.

- Need to maintain connection state (queue pairs)

Approach: Design RPC layer that is fast, simple, scalable
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COMPARING RDMA MODES

SEND/RECV  WRITE READ/ATOMIC

RC V/ v v
uc v v X
UD V X X

Table 1: Verbs supported by each transport type. RC, UC, and
UD stand for Reliable Connected, Unreliable Connected, and
Unreliable Datagram, respectively.



PAPER CONTRIBUTIONS

. Design RPC using two-sided unreliable datagram verbs

. Support parallel RPCs using co-routines

. Optimizations for batching

. Detect / Handle packet loss ?



NEED FOR DATAGRAM RPGS

How to do index operations ?
FaRM: Inline values with keys
DrTM: Replicate index

Queue pair scaling
Connection state per thread to all recipients
Optimizations like sharing queue pairs (affect performance)

Datagram transport require no state!
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FASST RPCS

Coroutines
- RDMA latency ~10us
- Use coroutines to yield while waiting for response

- Small number (~20) coroutines per thread

Master/worker
- Master co-routine handles request from remote machines

- Workers run application logic and issue RPC requests



RPG OPTIMIZATIONS

Request Batching
Each request has to ring NIC “Doorbell” from CPU
Coalesce multiple messages (e.g., multi-key transaction)
Invoke coroutine once per batch

Batching is opportunisitic

Cheap RECV posting
Need to limit size of RECV queue
Required modifying NIC driver



RELIABILITY

/

Node 2 Node 1

® 69 nodes, 46 hours

o ® 100 trillion packets
- No end-to-end reliability

+ Link layer flow control e 50 PB transferred
+ Link layer retransmission



RELIABILITY ?

Handling packet loss
Use timeout to check if coroutine got reply
On timeout, kill the FaSST process on the machine!
Timeouts can be large - don’t affect other threads

Application-level recovery (second talk)

Pros/cons of this approach ?



LIMITATIONS

RPC messages smaller than MTU (4KB)

Each co-routine issues one message per destination per batch
Why ? Keep RECV queues small



FASST TRANSACTIONS
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FASST API

Applications create read sets and write set
AddToReadSet (K, *V) and AddToWriteSet (K, *V, mode)
Lazily evaluated (not run until Execute is called)
Allows batching
Applications can call Execute multiple times!

Transaction status
Commit() / Abort() based on transaction result



SUMMARY

One-sided RDMA read vs two-sided RDMA RPC

RPCs: useful building block
Need to handle link reliability

More debate:
“Deconstructing RDMA-enabled Distributed Transactions: Hybrid is Better!”



