FASST: FAST, SCALABLE, AND SIMPLE
DISTRIBUTED TRANSACTIONS

Shivaram Venkataraman
Fall 2018

MOTIVATION

RDMA is great! We can build fast distributed stores!
Existing systems all use |-sided RDMA
- Need for multiple round trips for B-Trees etc.

- Need to maintain connection state (queue pairs)

Approach: Design RPC layer that is fast, simple, scalable

Node 1

ONE-SIDED VS TWO-SIDED

One-sided (READ)

<

Two-sided (SEND)

DRAM

COMPARING RDMA MODES

SEND/RECV WRITE READ/ATOMIC

RC V/ v v
uc v v X
UD V X X

Table 1: Verbs supported by each transport type. RC, UC, and
UD stand for Reliable Connected, Unreliable Connected, and
Unreliable Datagram, respectively.

PAPER CONTRIBUTIONS

. Design RPC using two-sided unreliable datagram verbs

. Support parallel RPCs using co-routines

. Optimizations for batching

. Detect / Handle packet loss ?

NEED FOR DATAGRAM RPGS

How to do index operations ?
FaRM: Inline values with keys
DrTM: Replicate index

Queue pair scaling
Connection state per thread to all recipients
Optimizations like sharing queue pairs (affect performance)

Datagram transport require no state!

Mrps per machine

14
12
10

onNnN A O

DATAGRAM RPGS VS ONE-SIDED

READ —s—
FaSST RPC (1 request/batch) - - - -
FaSST RPC (11 requests/batch) —e—

1

|
64 128 192 256 320

READ size or RPC response size (bytes)
(a) CX3 cluster (ConnectX-3 NIC)

Real cluster of 6 nodes

Mrps/physical machine

20

15 |

10

Emulated cluster

~ N | L 800
—u— QPs/physical machine for READs 700
- -» - READ Mrps 600
—=— RPCMrmps 500
i 4 400
LR 4 300
R o 4 200
i b, 4 100

! . | il S Wil Wi et sitiets:

0 10 20 30 40 50 60 70 80 90 100

Number of emulated machines

FASST RPCS

Coroutines
- RDMA latency ~10us
- Use coroutines to yield while waiting for response

- Small number (~20) coroutines per thread

Master/worker
- Master co-routine handles request from remote machines

- Workers run application logic and issue RPC requests

RPG OPTIMIZATIONS

Request Batching
Each request has to ring NIC “Doorbell” from CPU
Coalesce multiple messages (e.g., multi-key transaction)
Invoke coroutine once per batch

Batching is opportunisitic

Cheap RECV posting
Need to limit size of RECV queue
Required modifying NIC driver

RELIABILITY

/

Node 2 Node 1

® 69 nodes, 46 hours

o ® 100 trillion packets
- No end-to-end reliability

+ Link layer flow control e 50 PB transferred
+ Link layer retransmission

RELIABILITY ?

Handling packet loss
Use timeout to check if coroutine got reply
On timeout, kill the FaSST process on the machine!
Timeouts can be large - don’t affect other threads

Application-level recovery (second talk)

Pros/cons of this approach ?

LIMITATIONS

RPC messages smaller than MTU (4KB)

Each co-routine issues one message per destination per batch
Why ? Keep RECV queues small

FASST TRANSACTIONS

Execute phase Commit phas
S ialization point Cmrmttd

ng\/\/\]
BRIy

e

cC W T ™ T
p— NN
P

1.Read + lock 2. Validate 3.Log 4.Commit 5.Commit
backup primary

FASST API

Applications create read sets and write set
AddToReadSet (K, *V) and AddToWriteSet (K, *V, mode)
Lazily evaluated (not run until Execute is called)
Allows batching
Applications can call Execute multiple times!

Transaction status
Commit() / Abort() based on transaction result

SUMMARY

One-sided RDMA read vs two-sided RDMA RPC

RPCs: useful building block
Need to handle link reliability

More debate:
“Deconstructing RDMA-enabled Distributed Transactions: Hybrid is Better!”

