
FaSST: Fast, Scalable, and Simple
Distributed Transactions

Shivaram Venkataraman
Fall 2018

MOTIVATION

RDMA is great! We can build fast distributed stores!

Existing systems all use 1-sided RDMA

 - Need for multiple round trips for B-Trees etc.
 - Need to maintain connection state (queue pairs)

Approach: Design RPC layer that is fast, simple, scalable

One-sided vs two-sided

COMPARING RDMA MODES

PAPER CONTRIBUTIONS

1.  Design RPC using two-sided unreliable datagram verbs

2.  Support parallel RPCs using co-routines

3.  Optimizations for batching

4.  Detect / Handle packet loss ?

NEED FOR DATAGRAM RPCS

How to do index operations ?
 FaRM: Inline values with keys
 DrTM: Replicate index

Queue pair scaling

 Connection state per thread to all recipients
 Optimizations like sharing queue pairs (affect performance)
 Datagram transport require no state!

DATAGRAM RPCS vs ONE-SIDED

Real cluster of 6 nodes

Emulated cluster

FASST RPCS

Coroutines
 - RDMA latency ~10us
 - Use coroutines to yield while waiting for response
 - Small number (~20) coroutines per thread

Master/worker

 - Master co-routine handles request from remote machines
 - Workers run application logic and issue RPC requests

RPC OPTIMIZATIONS

Request Batching
 Each request has to ring NIC “Doorbell” from CPU
 Coalesce multiple messages (e.g., multi-key transaction)
 Invoke coroutine once per batch
 Batching is opportunisitic

Cheap RECV posting

 Need to limit size of RECV queue
 Required modifying NIC driver

RELIABILITY

RELIABILITY ?

Handling packet loss
 Use timeout to check if coroutine got reply
 On timeout, kill the FaSST process on the machine!
 Timeouts can be large – don’t affect other threads
 Application-level recovery (second talk)

Pros/cons of this approach ?

LIMITATIONS

RPC messages smaller than MTU (4KB)

Each co-routine issues one message per destination per batch
Why ? Keep RECV queues small

FASST TRANSACTIONS

FASST API

Applications create read sets and write set
	AddToReadSet(K,*V) and AddToWriteSet(K,	*V,	mode)	
	Lazily evaluated (not run until Execute is called)
 Allows batching
 Applications can call Execute multiple times!

Transaction status

 Commit() / Abort() based on transaction result

	

SUMMARY

One-sided RDMA read vs two-sided RDMA RPC

RPCs: useful building block
Need to handle link reliability

More debate:
“Deconstructing RDMA-enabled Distributed Transactions: Hybrid is Better!”

