
Abhay	Venkatesh	

Realtime Data Processing at Facebook 



Why 
Streaming at 

Facebook? 

•  Actionable	reports	
•  e.g.	Chorus:	what	is	trending	right	now?	

•  Realtime	monitoring	
•  e.g.	dashboard	queries	

•  Hybrid	realtime-batch	pipelines	
•  e.g.	pre-emptive	queries	over	data	warehouse		



Workload 
Assumptions 

•  s	not	ms,	which	means	
•  can	use	persistent	message	bus	called	Scribe	
•  which	makes	it	easier	to	enable	

•  Fault	tolerance	
•  Scalability	
•  Multiple	options	for	correctness	



System Architecture 



The Streaming 
Triad 

•  Puma	
•  Swift	
•  Stylus	



Puma 

•  For	apps	written	in	a	SQL-like	language	
•  Quick	to	write	(<	1	hour)	
•  But	run	over	long	periods	(months	to	years)	
•  Two	purposes	
•  Pre-computed	query	results	for	simple	
aggregation	queries	
•  Filtering	and	processing	of	Scribe	streams	



A Puma App 



Swift 

Very	Basic	API	
• Can	read()	from	a	Scribe	Stream	
• Checkpoints	every	
•  N	Strings,	or	
•  B	Bytes	



Stylus 
•  Low-Level	Stream	Processing	in	C++	

	
Scribe	
Stream	

Stylus	
Processor(s)	

Scribe	
Stream	or	
Data	Store	



Sample Application 



Design 
Decisions 

•  Language	Paradigm	
•  Data	Transfer	
•  Processing	Semantics	
•  State-saving	mechanism	
•  Reprocessing	



Design 
Decisions 

•  Language	Paradigm	
•  Data	Transfer	
	
•  Processing	Semantics	
•  State-saving	mechanism	
•  Reprocessing	



Processing 
Semantics 

•  At	least	once,	at	most	once	or	exactly	once	
•  State	semantics	(inputs)	
•  Output	semantics	





State-Saving Mechanisms 



Reprocessing 
Data 

•  Data	warehousing	with	Hive	
•  Stream	processing	in	batch	environment	

•  Puma	->	Hive	
•  Stylus	->	stateless,	stateful,	and	monoid	



Closing 
Thoughts 

•  “Move	Fast”	
•  Ease	of	debugging	
•  Ease	of	deployment	
•  Ease	of	monitoring	and	operation	



Comparison 
with Naiad 

Naiad	 Facebook	Realtime	Systems	

•  Milliseconds,	not	seconds	
•  Robust	solutions	to	

micro-stragglers	
•  Expense	availability	in	event	

of	failure	
•  Naiad	consumes	inputs	from	

message	queue,	and	writes	
to	key-value	store	

•  Seconds,	not	milliseconds	
•  Does	not	handle	micro-

stragglers	
•  Persistent	message	bus	

ensures	no	loss		
•  Flexible,	and	easy	to	use,	

deploy,	debug	


