GS 744: BIG DATA SYSTEMS

Shivaram Venkataraman
Fall 2018

HISTORY OF DISTRIBUTED FILE SYSTEMS

SUNNFS

System Calls System Calls
VNODE/VFS VNODE/VFES
L L N2
PC Filesystem 4.2 Filesystem NFS Filesystem Server Routines
V,
1 — RPC / XDR RPC / XDR
Floppy Disk

Network
||

Figure 1

ANDREW FILE SYSTEM

Architecture

Workstations Servers

BUserven”S\
S Vice
- Design for scale [unixiemel]

=

| UNIXkemel |
}Uservenus\ =R ——

program

- Whole-file caching S |

Vice

EuserVenus\
| UNIXkemel |

rogram
UNIX kernel |

- Callbacks from server = ===

WORKLOAD PATTERNS (1991)

100

eseene Trace 1
. - = = Trace
./ e===+ Trace3

ws=es Trace 4
Trace 5
. — — = Trace 6
r©r - =esss Trace 7
—-—- Trace 8

- é e
Ll ¢

& MR v aRE AR v
Run Length (bytes)

Mary G. Baker, John H. Hartman, Michael D. Kupfer, Ken W. Shirriff, and John K. Qusterhout

WORKLOAD PATTERNS (1991)

File Usage Type of Transfer Accesses (%) ‘ Bytes (%)
Whole-file 78 (64-91) 89 (46-96)
Read-only Other sequential 19 (7-33) 5 (2-29)
Random 3 (1-5) 7 (2-37)
Whole-file 67 (50-79) 69 (56-76)
Write-only Other sequential 29 (1847) 19 (4-27)
Random 4 (2-8) 11 (4-41)
Whole-file 0 (0-0) 0 (0-0)
Read/write Other sequential 0 (0-0) 0 (0-0)
Random 100 (100-100) 100 (100-100)

OCEANSTORE/PAST

Wide area storage systems

. (\
Fully decentralized o

Built on distributed hash
tables (DHT)

Components with failures Files are huge !

GFS: WHY ?

Applications are different

GFS: WORKLOAD ASSUMPTIONS

Two kinds of reads: Large Streaming and small random
Writes: Many large, sequential writes. No random

High bandwidth more important than low latency

GFS: WHAT ?

Application

(file name, chunk index) GFS master

- Single Master for GFS client |

metadata (chunk handle,
chunk locations)

- Chunkservers for
storing data

(chunk handle, byte range)

File namespace ,~

'
1
’

- /foo/bar

chunk 2ef0

Y

Instructions to chunkserver

Chunkserver state

Y

Lege

- GFS chunkserver

chunk data

- No POSIX API !
- No Caches!

GFS chunkserver

Linux file system

Linux file system

SIS

55 -

Figure 1: GFS Architecture

Client

step 1

GFS: WHAT ?

Y

Master

13

Secondary
Replica A

l

Primary
Replica

-
-

l

Secondary
Replica B

Legend:

Control

))t

- Replication to handle faults

- Primary replica for each chunk

- Chain replication (consistency)

WHAT HAPPENED NEXT

O
Cluster-Level Storage @ Google

How we use Colossus to improve storage efficiency

Denis Serenyi
Senior Staff Software Engineer

dserenyi@google.com

Keynote at PDSWV-DISCS 2017: 2nd Joint International Workshop On Parallel Data Storage &

Data Intensive Scalable Computing Systems

GFS EVOLUTION

Motivation:

- GFS Master
One machine not large enough for large FS
Single bottleneck for metadata operations (data path offloaded)
Fault tolerant, but not HA

- Lack of predictable performance
No guarantees of latency
(GFS problems: one slow chunkserver -> slow writes)

GFS EVOLUTION

GFS master replaced by Colossus
Metadata stored in BigTable [next class !]

Recursive structure ? If Metadata is ~1/10000 the size of data
|00 PB data — |0 TB metadata

|0TB metadata — | GB metametadata

| GB metametadata — |00KB meta...

GFS EVOLUTION

Need for Efficient Storage
Rebalance old, cold data

Distributes newly written data evenly cold data
across disk

Manage both SSD and hard disks hot data

big disk

HETEROGENEOUS STORAGE

. DynamoDB

&P redis

Blob stores Key Value Stores

amazon | S3

F4: Facebook (This class !)

