
GraphX : Graph Processing in a
Distributed Dataflow Framework

OSDI 2014

Bidyut	Hota	

Agenda

•  Analytics space background

•  Motivation

•  Goal

•  Approach

•  Optimizations

•  Results

•  Flaws/Limitations

•  Questions

Real life Analytics Pipeline

Link Table Page Rank Desired results Raw data

Eg. Google Knowledge graph :570MVertices, 18B Edges (as in Mid 2017)

Real life Analytics Pipeline

Link Table Page Rank Desired results Raw data

Tables

Real life Analytics Pipeline

Link Table Page Rank Desired results Raw data

Graphs

Systems landscape

Motivation

• Currently separate systems
exist to compute on these
data representation.
• Ability to combine data

sources.
• Enhance dataflow

frameworks to leverage
inherent positives.

	

Current drawbacks of
dataflow frameworks

•  Implementing iterative algorithms ->
requires multiple stages of complex
joins.
• Do not cover common patterns in

graph algorithms -> Room for
optimization.
• Unlike Spark, no fine grained control

of data partitioning.

Current drawbacks of
specialized systems

• Lacking ability for combining graphs
with unstructured or tabular data
• Systems favoring snapshot recovery

rather than fault tolerance like in
Spark

What can we
leverage?

•  Immutability of RDD’s
• Reusing indices across graph and

collection views over iterations.
•  Increase in performance

Goal

• General purpose distributed
frameworks for graph
computations
• Comparable performances to

specialized graph processing
systems

Approach

•  Unifies Tabular view and Graph view

•  Imbibe the best of specialized systems

•  Graph representation on dataflow frameworks

•  Optimizations

•  Develop GraphX API on top of Spark

Graph approach: Page Rank example

•  Eg. Page Rank algorithm
• Graph parallel abstraction
• Define a vertex program
•  Terminate when vertex programs
 vote to halt

 Figure : PageRank in Pregel

Approach

• GAS (Gather Apply Scatter)

 How to apply this in dataflow frameworks?
• Map, group-by, join dataflow operators
	

Representing Property graphs as Tables

Never transfer edges

GraphX API

Using the dataflow operators

Logical representation Join of vertices table on edges table

Using the dataflow operators on vertex program

Userdefined		

Optimizations

Specialized	Data	Structure	 Vertex-cut	Partitioning	 Remote	caching	

Active	Set	Tracking	

Implementing Optimizations

• Reusable Hash index
•  Sequential scan or clustered scan based on active set (Dynamic)
•  Incremental updates
• Automatic Join elimination

 Additional optimizations:
• Memory based shuffle
• Batching and columnar structure
• Variable Integer encoding

Results

Results

 Scaling for PageRank
on Twitter dataset

 Effect of partitioning on
communication

Current Flaws
•  Is not optimized for dynamic graphs.
• Requires incremental updates to

routing table.
•  Is not designed for streaming

applications.

• Asynchronous graph computation not
available. This is where Naiad will
outperform.

Questions

