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Real life Analytics Pipeline 

Link Table Page Rank Desired results Raw data 

Eg. Google Knowledge graph :570MVertices, 18B Edges ( as in Mid 2017) 



Real life Analytics Pipeline 

Link Table Page Rank Desired results Raw data 

Tables 



Real life Analytics Pipeline 

Link Table Page Rank Desired results Raw data 

Graphs 



Systems landscape 



Motivation 

• Currently separate systems 
exist to compute on these 
data representation. 
• Ability to combine data 

sources. 
• Enhance dataflow 

frameworks to leverage 
inherent positives. 

	



Current drawbacks of 
dataflow frameworks 

•  Implementing iterative algorithms -> 
requires multiple stages of complex 
joins. 
• Do not cover common patterns in 

graph algorithms -> Room for 
optimization. 
• Unlike Spark, no fine grained control 

of data partitioning. 



Current drawbacks of 
specialized systems 

• Lacking ability for combining graphs 
with unstructured or tabular data 
• Systems favoring snapshot recovery 

rather than fault tolerance like in 
Spark 



What can we 
leverage? 

•  Immutability of RDD’s 
• Reusing indices across graph and 

collection views over iterations. 
•  Increase in performance 



Goal 

• General purpose distributed 
frameworks for graph 
computations 
• Comparable performances to 

specialized graph processing 
systems 



Approach 

•  Unifies Tabular view and Graph view 

•  Imbibe the best of specialized systems 

•  Graph representation on dataflow frameworks 

•  Optimizations  
 
•  Develop GraphX API on top of Spark 



Graph approach: Page Rank example 

•  Eg. Page Rank algorithm 
• Graph parallel abstraction 
• Define a vertex program 
•  Terminate when vertex programs  
    vote to halt 

 Figure : PageRank in Pregel 
 



Approach 

• GAS (Gather Apply Scatter) 

   
   

 

  How to apply this in dataflow frameworks? 
• Map, group-by, join dataflow operators 
	



Representing Property graphs as  Tables 

Never transfer edges 



GraphX API 



Using the dataflow operators 

Logical representation Join of  vertices table on edges table  



Using the dataflow operators on vertex program 

Userdefined		



Optimizations 

Specialized	Data	Structure	 Vertex-cut	Partitioning	 Remote	caching	

Active	Set	Tracking	



Implementing Optimizations 

• Reusable Hash index 
•  Sequential scan or clustered scan based on active set (Dynamic) 
•  Incremental updates 
• Automatic Join elimination 

 Additional optimizations: 
• Memory based shuffle 
• Batching and columnar structure 
• Variable Integer encoding 
 



Results 



Results 

 Scaling for PageRank 
on Twitter dataset 

 Effect of partitioning on 
communication 

 



Current Flaws 
•  Is not optimized for dynamic graphs. 
• Requires incremental updates to 

routing table. 
•  Is not designed for streaming 

applications. 

• Asynchronous graph computation not 
available. This is where Naiad will 
outperform. 



Questions 


