SO

Mesos:

A Plaiform for Fine-Grained Resource
Sharing in the Data Center

Jayashankar .T

——
Agenda

e Motivation & Problem Statement
* Design

¢ Architecture

® Scheduling Resource Offer

e Fault Tolerance

e Evaluation

* Comparison

Motivation

GOUSle

A A Ry Pregel

s M [IRA
Outpet fie \ﬁ ‘/ ‘LE}M.W
Dryad -

* Many Cluster Compute Frameworks are available today

* Single framework do not suffice all applications

|
Cluster: o “Premous Resource

we needs it?

One Cluster to Rule Them All !!

|
Typical Problem

* Facebook’s Hadoop data warehouse
e 2000 nodes cluster
e Fair scheduler for Hadoop
e Workloads are fine-grained, so task level resource allocation
e Optimum data locality

* Only runs Hadoop &

* Can it run other frameworks fairly and efficiently ?

|
What do we wante

e We want to run multiple frameworks on our cluster

e Sharing improves cluster utilization:
1. Applications share access to large datasets
2. Costly to replicate across distinct nodes

-

|
Common Cluster Sharing Solutions

e Static Partitioning: run one * Assign VMs to each
framework per partition framework
e e |
e Concerns:

e Non optimal cluster utilization
e Inefficient data sharing (e.g. unnecessary replication)

Mesos

* Platform for sharing c

usters between multiple computing frameworks

e Can run multiple instances of same framework
e Provide isolation between production and development environment

e Concurrently running several frameworks

* Support any new specialized frameworks

e Be scalable and reliable at the same time

_—
Mesos Design

* Provide minimal interface for resource sharing across frameworks
e Offload task scheduling and execution onto frameworks

e Thus,

e Frameworks have the liberty to implement diverse solutions to problems
e Keeping Mesos Simple, becomes robust, scalable, manageable and stable

* Although expectation is to have high-level libraries on top Mesos for
fault tolerance (keeping Mesos small & flexible)

e

Mesos Architecture

Hadoop
scheduler

MPI

scheduler

task |

task |

Mesos Agent Mesos Agent Mesos Agent
Hadoop MPI Hadoop|| MPI
executor executor executor||executor

task task

ZooKeeper
quorum

P —

Resource Offer

Framework 1
Job 1 Job 2
FW Scheduler

Framework 2

Job 1

Job 2

FW Scheduler

<task1, s1, 2cpu, 1gb, ... >
<s1, 4cpu, 4gb, ... > (2 <task2, s1, 1cpu, 2gb, ... >

——%

Allocation
module

VA

Mesos
master

;

Al

P e e

<s1, 4cpu, 4gb, ... > (1 <fw1, task1, 2cpu, 1gb, ... >
<fw1, task2, 1cpu, 2gb, ... >

Agent 2

Executor

Task

Task

Allocator on Master and Executor on
Slave

Stepl: slave provide resource info
Step2: offer made to framework
Step3: Framework presents task

Steps4: Master sends task to slaves

~Resource Offer

* Mesos doesn’t require frameworks to specity their requirements

* Frameworks can reject the offer, if it does not stratity constraints and
can decide to wait

* To prevent framework from waiting too long, frameworks can set filters

e Example: will never accept offer with less than 8G memory

e Filters optimize offer model

~—Mesos Characteristics

e Filter can be directly provided at master to short circuit offer process
e Resource offered is Resource allocated
e Every offer has timeout for acceptance — Master rescinds the offer after that

* Pluggable Allocation Module, support for flexible allocation policy
e Fair sharing policy: Frameworks with Small Tasks wait less
e Strict Priorities

e Guaranteed Allocation: task revocation wont happen for certain
frameworks (interdependent like MPI)

* [solation is achieved through OS container

Fault Tolerance

e Master has to be fault tolerant:

e Master is designed to be soft state, new master can reconstruct internal
state from slaves and framework schedulers

e Master stores: active slaves, active frameworks and running tasks

® Multiple masters run in hot standby and Zookeepers is used for leader
election

* Node and executor failure are reported to framework, to be taken care

® Scheduler failure is overcome with framework registering multiple
schedulers for redundancy

|
Resource Sharing

1
v
= 0.8
o
o 0.6
=
bt)
5 o4
o
o 0.2 | |
’ |

0 —

0 200 Tz,oo T600 8oo0 1000 1200 1400 1600
Time (s)
Spark Facebook Hadoop Mix

Large Hadoop Mix e Torque / MP|

SO
m Locality with Resource Ofters

* Mesos use “delay scheduling”: wait for limited time for specific local nodes else
continue
Ran 16 instances of Hadoop on a shared HDFS cluster

Used delay scheduling [EuroSys ‘10] in Hadoop to get
locality (wait a short time to acquire data-local nodes)

Local Map Tasks (%) Job Duration (s)
100% 600
R -
60% —— 400 T v
300 E.E —
40% .: 200 | ——
20% 100
0% 1 S 1 0o I |
Static Mesos Static Mesos

Partitioning Partitioning

|t
Scalability

Mesos only performs inter-framework scheduling (e.q. fair
sharing), which is easier than intra-framework scheduling

Result:

Scaled to 50,000
emulated slaves,
200 frameworks,
100K tasks (30s len)

O O
O 0 L

Task Start Overhead (s)
© ©
N -+
4‘\

o
]

O 10000 20000 30000 40000 50000
Number of Slaves

~Limitations and Overcoming them

e Starvation of large tasked frameworks

e Allocation modules support a minimum offer size on each slave, and abstain
from offering resources on the slave until this amount is free

* Interdependent Frameworks: framework using data generated by other
e Such scenarios are rare in practice.

e frameworks only have preferences over which nodes they use, and can have
filters for specific nodes

* Complex Frameworks: schedulers have to be smart to judge resource offers
e Job type and time can not be predicted to have a centralized scheduler

Mesos v Borg

* Less Control and Simple * Complex but Better Control

* Very less start up overhead * More Start up Latency

* Frameworks have to be * Framework/Applications
modified to support Mesos need be changed much

“Mesos = Borg — Scheduling”

— Mesos v YARN

* YARN makes the decision where jobs should go,

e Thus it is modeled as a monolithic scheduler.

Ay dpache,
* Running YARN over Mesos: Project aaegg’ myr'ICId
YARN Manager
Myriad Executor

Mesos Slave

|
References

* MESOS Project

http://mesos.apache.org/documentation/latest/

e USENIX Video

https://www.usenix.org/conference/nsdill/mesos-platform-fine-grained-
resource-sharing-data-center

Addi’rioncl slides

g -
Cenftralized v Distributed Scheduling
I N R N

Workload heterogeneity v

Task placement v

Enforcing scheduling v
invariants

AN

Allocation latency

AN

Slot utilization

AN

Scalability

Iv\esos Architecture

Example Mesos Architecture

PO DDA e . -y

MESOS MASTER QUORUM

[Framework A l‘ S ! Master

{ Scheduler OFFER E
LEADER
7\
’ /@ \
[Framework B l E ZK ZK
l Schaduler :FFE: : STANDBY 7 STANDBY
: Master Master

L L L

. OFFER

| OFFER

Framework A

Executor
TASK

Slave 1

Framework B

Executor

TASK

Slave N

/

e
Mesos APIS

Scheduler Callbacks Scheduler Actions

resourceOffer(offerld, offers) | replyToOffer(offerld, tasks)

offerRescinded(offerld) setNeedsOffers(bool)
statusUpdate(taskld, status) | setFilters(filters)
slavel ost(slaveld) getGuaranteedShare()

il Task(taskld)

Executor Callbacks Executor Actions

launchTask(taskDescriptor) sendStatus(taskld, status)
KillTask(taskld)

_— Mesos Web Ul

Mesos provides a web Ul for reporting information about the Mesos cluster. It can be accessed from

<port> ;inourcase, thiswillbe http://master:5050 .Thisincludesthe slaves, aggregated resources,

frameworks, and so on. Here is the screenshot of the web interface:

—

<master-host>:

 Master

Cluster: (Unnamed) O
Server: 10.157.31.217:5050
Bullt: 5 days ago by root
Started: 12 minutes ago
Slaves

Activated

Deactivated

Tasks
Staged
Started
Finished
Killed

Falled

0 O O

Active Frameworks (s

ID ¥ User Name Active Tasks CPUs Mem Max Share

Terminated Frameworks

DY User Name Registered
Offers
DY Framework Host CPUs

Registered Re-Registered

Unregistered

Mem

——
Mesos Ecosystem

* Mesosphere — DC/OS: datacenter operating system
* Mesosphere — Marathon: container management system

* Airbnb -- Chronos: scheduler for Mesos, eases the orchestration of jobs

