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* Many Cluster Compute Frameworks are available today

* Single framework do not suffice all applications
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Cluster: o “Premous Resource

we needs it?

One Cluster to Rule Them All !!



|
Typical Problem

* Facebook’s Hadoop data warehouse
e 2000 nodes cluster
e Fair scheduler for Hadoop
e Workloads are fine-grained, so task level resource allocation
e Optimum data locality

* Only runs Hadoop &

* Can it run other frameworks fairly and efficiently ?
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What do we wante

e We want to run multiple frameworks on our cluster

e Sharing improves cluster utilization:
1. Applications share access to large datasets
2. Costly to replicate across distinct nodes
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Common Cluster Sharing Solutions

e Static Partitioning: run one * Assign VMs to each
framework per partition framework
e e |
e Concerns:

e Non optimal cluster utilization
e Inefficient data sharing (e.g. unnecessary replication)



Mesos

* Platform for sharing c

usters between multiple computing frameworks

e Can run multiple instances of same framework
e Provide isolation between production and development environment

e Concurrently running several frameworks

* Support any new specialized frameworks

e Be scalable and reliable at the same time
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Mesos Design

* Provide minimal interface for resource sharing across frameworks
e Offload task scheduling and execution onto frameworks

e Thus,

e Frameworks have the liberty to implement diverse solutions to problems
e Keeping Mesos Simple, becomes robust, scalable, manageable and stable

* Although expectation is to have high-level libraries on top Mesos for
fault tolerance (keeping Mesos small & flexible)
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Mesos Architecture
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Resource Offer
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~Resource Offer

* Mesos doesn’t require frameworks to specity their requirements

* Frameworks can reject the offer, if it does not stratity constraints and
can decide to wait

* To prevent framework from waiting too long, frameworks can set filters

e Example: will never accept offer with less than 8G memory

e Filters optimize offer model



~—Mesos Characteristics

e Filter can be directly provided at master to short circuit offer process
e Resource offered is Resource allocated
e Every offer has timeout for acceptance — Master rescinds the offer after that

* Pluggable Allocation Module, support for flexible allocation policy
e Fair sharing policy: Frameworks with Small Tasks wait less
e Strict Priorities

e Guaranteed Allocation: task revocation wont happen for certain
frameworks (interdependent like MPI)

* [solation is achieved through OS container



Fault Tolerance

e Master has to be fault tolerant:

e Master is designed to be soft state, new master can reconstruct internal
state from slaves and framework schedulers

e Master stores: active slaves, active frameworks and running tasks

® Multiple masters run in hot standby and Zookeepers is used for leader
election

* Node and executor failure are reported to framework, to be taken care

® Scheduler failure is overcome with framework registering multiple
schedulers for redundancy
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Resource Sharing
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m Locality with Resource Ofters

* Mesos use “delay scheduling”: wait for limited time for specific local nodes else
continue
Ran 16 instances of Hadoop on a shared HDFS cluster

Used delay scheduling [EuroSys ‘10] in Hadoop to get
locality (wait a short time to acquire data-local nodes)
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Scalability

Mesos only performs inter-framework scheduling (e.q. fair
sharing), which is easier than intra-framework scheduling

Result:

Scaled to 50,000
emulated slaves,
200 frameworks,
100K tasks (30s len)
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~Limitations and Overcoming them

e Starvation of large tasked frameworks

e Allocation modules support a minimum offer size on each slave, and abstain
from offering resources on the slave until this amount is free

* Interdependent Frameworks: framework using data generated by other
e Such scenarios are rare in practice.

e frameworks only have preferences over which nodes they use, and can have
filters for specific nodes

* Complex Frameworks: schedulers have to be smart to judge resource offers
e Job type and time can not be predicted to have a centralized scheduler



Mesos v Borg

* Less Control and Simple * Complex but Better Control

* Very less start up overhead * More Start up Latency

* Frameworks have to be * Framework/Applications
modified to support Mesos need be changed much

“Mesos = Borg — Scheduling”



— Mesos v YARN

* YARN makes the decision where jobs should go,

e Thus it is modeled as a monolithic scheduler.

Ay dpache,
* Running YARN over Mesos: Project aaegg’ myr'ICId
YARN Manager
Myriad Executor

Mesos Slave
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Iv\esos Architecture

Example Mesos Architecture
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Mesos APIS

Scheduler Callbacks Scheduler Actions

resourceOffer(offerld, offers) | replyToOffer(offerld, tasks)

offerRescinded(offerld) setNeedsOffers(bool)
statusUpdate(taskld, status) | setFilters(filters)
slavel ost(slaveld) getGuaranteedShare()

il Task(taskld)

Executor Callbacks Executor Actions

launchTask(taskDescriptor) sendStatus(taskld, status)
KillTask(taskld)




_— Mesos Web Ul

Mesos provides a web Ul for reporting information about the Mesos cluster. It can be accessed from

<port> ;inourcase, thiswillbe http://master:5050 .Thisincludesthe slaves, aggregated resources,

frameworks, and so on. Here is the screenshot of the web interface:
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Mesos Ecosystem

* Mesosphere — DC/OS: datacenter operating system
* Mesosphere — Marathon: container management system

* Airbnb -- Chronos: scheduler for Mesos, eases the orchestration of jobs



