
Jayashankar .T	

Agenda
� Motivation & Problem Statement	
� Design	
� Architecture	
�  Scheduling Resource Offer	
�  Fault Tolerance	
� Evaluation	
� Comparison	
	
	

Motivation

	
� Many Cluster Compute Frameworks are available today	
	
�  Single framework do not suffice all applications	

Cluster: a “Precious” Resource

One Cluster to Rule Them All !!	

Typical Problem
�  Facebook’s Hadoop data warehouse	

�  2000 nodes cluster	
�  Fair scheduler for Hadoop	
�  Workloads are fine-grained, so task level resource allocation	
�  Optimum data locality	

� Only runs Hadoop L	

� Can it run other frameworks fairly and efficiently ? 	

What do we want?

� We want to run multiple frameworks on our cluster

� Sharing improves cluster utilization:

1.  Applications share access to large datasets
2.  Costly to replicate across distinct nodes

Common Cluster Sharing Solutions
�  Static Partitioning: run one

framework per partition	
� Assign VMs to each

framework	

� Concerns:	
�  Non optimal cluster utilization	
�  Inefficient data sharing (e.g. unnecessary replication) 	

Mesos

� Platform for sharing clusters between multiple computing frameworks	

� Can run multiple instances of same framework	
�  Provide isolation between production and development environment	
�  Concurrently running several frameworks	

�  Support any new specialized frameworks	

� Be scalable and reliable at the same time	

	

Mesos Design
� Provide minimal interface for resource sharing across frameworks	

� Offload task scheduling and execution onto frameworks	

� Thus,	
�  Frameworks have the liberty to implement diverse solutions to problems	
�  Keeping Mesos Simple, becomes robust, scalable, manageable and stable	

� Although expectation is to have high-level libraries on top Mesos for
fault tolerance (keeping Mesos small & flexible)	

Mesos Architecture

Resource Offer
�  Allocator on Master and Executor on

Slave	

�  Step1: slave provide resource info	

�  Step2: offer made to framework	

�  Step3: Framework presents task	

�  Steps4: Master sends task to slaves	

Resource Offer
� Mesos doesn’t require frameworks to specify their requirements	

�  Frameworks can reject the offer, if it does not stratify constraints and
can decide to wait	

� To prevent framework from waiting too long, frameworks can set filters	
�  Example: will never accept offer with less than 8G memory	

�  Filters optimize offer model	
	

Mesos Characteristics
�  Filter can be directly provided at master to short circuit offer process	

�  Resource offered is Resource allocated	
�  Every offer has timeout for acceptance – Master rescinds the offer after that	

� Pluggable Allocation Module, support for flexible allocation policy	
�  Fair sharing policy: Frameworks with Small Tasks wait less	
�  Strict Priorities	
�  Guaranteed Allocation: task revocation wont happen for certain

frameworks (interdependent like MPI)	

�  Isolation is achieved through OS container	

Fault Tolerance
� Master has to be fault tolerant:	

�  Master is designed to be soft state, new master can reconstruct internal
state from slaves and framework schedulers	

�  Master stores: active slaves, active frameworks and running tasks	

� Multiple masters run in hot standby and Zookeepers is used for leader
election	

� Node and executor failure are reported to framework, to be taken care	

�  Scheduler failure is overcome with framework registering multiple
schedulers for redundancy 	

Resource Sharing

Data Locality with Resource Offers
•  Mesos use “delay scheduling”: wait for limited time for specific local nodes else

continue	

Scalability

Limitations and Overcoming them
�  Starvation of large tasked frameworks	

�  Allocation modules support a minimum offer size on each slave, and abstain
from offering resources on the slave until this amount is free	

�  Interdependent Frameworks: framework using data generated by other	
�  Such scenarios are rare in practice. 	
�  frameworks only have preferences over which nodes they use, and can have

filters for specific nodes	

� Complex Frameworks: schedulers have to be smart to judge resource offers	
�  Job type and time can not be predicted to have a centralized scheduler	

Mesos v Borg

� Less Control and Simple	

� Very less start up overhead	

�  Frameworks have to be
modified to support Mesos	

� Complex but Better Control	

� More Start up Latency	

�  Framework/Applications
need be changed much	

“Mesos = Borg – Scheduling”	

Mesos v YARN
�  YARN makes the decision where jobs should go, 	

� Thus it is modeled as a monolithic scheduler. 	
	
� Running YARN over Mesos: Project	

Mesos Slave	

Myriad Executor	

YARN Manager	

References
� MESOS Project 	

http://mesos.apache.org/documentation/latest/	
	

� USENIX Video	
https://www.usenix.org/conference/nsdi11/mesos-platform-fine-grained-
resource-sharing-data-center	
	

Additional slides

Centralized v Distributed Scheduling

Mesos Architecture

Mesos APIs

Mesos Ecosystem
� Mesosphere – DC/OS: datacenter operating system	

� Mesosphere – Marathon: container management system	

� Airbnb -- Chronos: scheduler for Mesos, eases the orchestration of jobs	

