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Why??

e Commonly Accepted mantras
* Network
o |O/disk

o Straggler



lakeways

Network can reduce job completion time by at 2%

/O optimizations lead to <19% reduction In
completion time

Many straggler causes can be identified and fixed

CPU is in general the bottleneck



Outline

* Methodology
* Results

* [hreats to validity



What Is the |ob's bottleneck

Network
Compute
Disk

tasks < Task x: may be bottlenecked on
different resources
at different times

Time t: different tasks may be bottlenecked

| on different resources
time >




Blocked Time Analysis

* Time when task is blocked on one resource (e.g
network)

* Blocked time analysis: how much faster would the
job complete If tasks never blocked on the
resource’




An Example of Blocked Time
Analysis for Network

-— ) Measure time when
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(2) Simulate how job completion time would change
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(2) Simulate how job completion time woulo
change
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Scheduler would have moved Task 2 to slot 2



Experiments Setting

e Big Data Benchmark, 50 queries, 50GB Data, 5 machines

 TPC-DS (Scale 5000), 260 gueries, 850GB Data, 20
machines

* Production, 30 queries, tens of GB Data, 9 machines



Experiments Setting

» All three workloads are Spark-SQL workloads

 (Coarse-grained analysis of traces from Facebook,
Google, Microsoft are used for sanity check



Reduction in JCT

How much faster co

uld jobs get from optimizing

network performance?
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Median improvement at most 2%



Are |obs network-light??

How much data is transferred per CPU secona?
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Microsoft '09-"10: 1.9-6.35 Mb / task second
Google '04-07: 1.34-1.61 Mb / machine second



AnalysIs

* Queries often shuffle and output much less data
than they read

e However, the result seems inconsistent from
previous work...



Two Reasons

* |ncomplete Metric

* Only look at shuffle time

e Conflation of CPU and network time

 Sending data over the network has an associated CPU cost



Analysis for /O

 Compressed data is used, CPU is traded for |/O

e Spark is written in Scala. Data read must be
deserialized to Java Objects.



Role of Straggler

* The median reduction from eliminating straggler <
10%

« Common causes: garbage collection, 1/O

 Many Stragglers are caused by inherent factors like
output size



T'hreats to Validity

* Only One Framework (Spark)
 Small cluster sizes

* Only three workloads



Related work

* Instead of using Spark, using Naiad can achieve
up to 3x speedups going from 1G network to 10G

network

e Spark is also memory-efficient, leveraging “in-
memory” computation

 Modern hardware (1/O, network links) are also
more improved compared to CPU



Comparison to Pivot Tracing

e Static v.s. Dynamic

* Resource Directed Analysis v.s. Crossing
Boundaries Analysis
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“The only way to get ahead is to find errors in
conventional wisdom.”

—Larry Ellison



