
CS 744: Big Data Systems

Shivaram Venkataraman
Fall 2018

MOTIVATION

Build Google Web Search !
 - Crawl documents, build inverted indexes etc.

Need for

 - automatic parallelization
 - network, disk optimization
 - handling of machine failures

OUTLINE

-  Programming Model
-  Execution Overview
-  Fault Tolerance
-  Optimizations

PROGRAMMING MODEL

Data type: Each record is (key, value)

Map function:

(Kin, Vin) à list(Kinter, Vinter)

Reduce function:
(Kinter, list(Vinter)) à list(Kout, Vout)

Example: Word Count

def mapper(line):
 for word in line.split():
 output(word, 1)

def reducer(key, values):
 output(key, sum(values))

Word Count Execution

the quick
brown fox

the fox ate
the mouse

how now
brown
cow

Map

Map

Map

Reduce

Reduce

brown, 2
fox, 2
how, 1
now, 1
the, 3

ate, 1
cow, 1

mouse, 1
quick, 1

the, 1
brown, 1

fox, 1
quick, 1

the, 1
fox, 1
the, 1

how, 1
now, 1

brown, 1

ate, 1
mouse, 1

cow, 1

Input Map Shuffle & Sort Reduce Output

Word Count Execution

the quick
brown fox

Map Map

the fox ate
the mouse

Map

how now
brown
cow

Automatically
split work

Schedule tasks
with locality

JobTracker
Submit a Job

Fault Recovery
If a task crashes:
–  Retry on another node
–  If the same task repeatedly fails, end the job

the quick
brown fox

Map Map

the fox ate
the mouse

Map

how now
brown
cow

Fault Recovery
If a task crashes:
–  Retry on another node
–  If the same task repeatedly fails, end the job

Requires user code to be deterministic

the quick
brown fox

Map Map

the fox ate
the mouse

Map

how now
brown
cow

Fault Recovery

If a node crashes:
–  Relaunch its current tasks on other nodes
 What about task inputs ? File system replication

the quick
brown fox

Map Map

the fox ate
the mouse

Map

how now
brown
cow

the quick
brown fox

Map

Fault Recovery

If a task is going slowly (straggler):
–  Launch second copy of task on another node
–  Take the output of whichever finishes first

the quick
brown fox

 Map

the fox ate
the mouse

Map

how now
brown
cow

REFINEMENTS

- Combiner functions

-  Counters

-  Side effects

Jeff Dean, LADIS 2009

DISCUSSION: Programmability

Most real applications require multiple MR steps
–  Google indexing pipeline: 21 steps
–  Analytics queries (e.g. sessions, top K): 2-5 steps
–  Iterative algorithms (e.g. PageRank): 10’s of steps

Multi-step jobs create spaghetti code
–  21 MR steps à 21 mapper and reducer classes

DISCUSSION: Performance

MR only provides one pass of computation
–  Must write out data to file system in-between

Expensive for apps that need to reuse data
–  Multi-step algorithms (e.g. PageRank)
–  Interactive data mining

QUESTIONS / DISCUSSION ?

