GS 744: BIG DATA SYSTEMS

Shivaram Venkataraman
Fall 2018



MOTIVATION

Build Google Web Search !
- Crawl documents, build inverted indexes etc.

Need for
- automatic parallelization
- network, disk optimization

- handling of machine failures



QUTLINE

- Programming Model

- Execution Overview

- Fault Tolerance

- Optimizations



PROGRAMMING MODEL

Data type: Each record is (key, value)

Map function:
(K'n’vin) 9 IiSt(Kinter’vinter)

Reduce function:
(Kinter’ IiSt(Vinter)) 9 IiSt(Kout’vout)



EXAMPLE: WORD COUNT

def mapper(line):
for word in line.split():
output(word, 1)

def reducer(key, values):
output(key, sum(values))



Input

the quick
brown fox

the fox ate
the mouse

how now
brown
cow

—

WORD COUNT EXECUTION

Map Shuffle & Sort

the, |
brown, |

Reduce

]

—

Output

brown, 2
fox, 2
how, |
now, |
the, 3

ate, |
cow, |
mouse, |
quick, |



WORD COUNT EXECUTION

Submit a Job

JobTracker
Schedule tasks

Automatically with locality

split wor

the quick the fox ate how now
use




FAULT RECOVERY

If a task crashes:
— Retry on another node
— If the same task repeatedly fails, end the job

_Map_

the quick
- fox

_ Map

how now




FAULT RECOVERY

If a task crashes:
— Retry on another node
— If the same task repeatedly fails, end the job

| Map_

the quick

_brama fox
Il

| Map

how now
brown

Requires user code to be deterministic




FAULT RECOVERY

If 2 node crashes:
— Relaunch its current tasks on other nodes
What about task inputs ? File system replication

_Map _ Map

how now

the fox ate




FAULT RECOVERY

If a task is going slowly (straggler):
— Launch second copy of task on another node
— Take the output of whichever finishes first

_ Map JE"Vap

4

the quick the quick the fox ate how now
— fox bre-- fox - nuse brown
. == [l




REFINEMENTS

- Combiner functions
- Counters

- Side effects



MapReduce Usage Statistics Over Time

Aug, ‘04 Mar, ‘06 Sep, '07

Number of jobs 29K
Average completion time (secs) 634
Machine years used 217
Input data read (TB) 3,288
Intermediate data (TB) 758
Output data written (TB) 193
Average worker machines 157

Jeff Dean, LADIS 2009

171K 2,217K
874 395
2,002 11,081
52,254 403,152
6,743 34,774
2,970 14,018
268 394

Sep, '09
3,467K
475
25,562
544,130
90,120
57,520
488



DISGUSSION: PROGRAMMABILITY

Most real applications require multiple MR steps
— Google indexing pipeline: 21| steps
— Analytics queries (e.g. sessions, top K): 2-5 steps
— lterative algorithms (e.g. PageRank): |0’s of steps

Multi-step jobs create spaghetti code
— 21 MR steps = 21 mapper and reducer classes



DISGUSSION: PERFORMANCE

MR only provides one pass of computation

— Must write out data to file system in-between

Expensive for apps that need to reuse data
— Multi-step algorithms (e.g. PageRank)

— Interactive data mining



QUESTIONS / DISCUSSION ?



