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MOTIVATION 

Build Google Web Search ! 
 - Crawl documents, build inverted indexes etc. 

 
Need for  

 - automatic parallelization 
 - network, disk optimization 
 - handling of machine failures 

 



OUTLINE 

-  Programming Model 
-  Execution Overview 
-  Fault Tolerance 
-  Optimizations 



PROGRAMMING MODEL 

Data type: Each record is (key, value) 
 
Map function: 

(Kin, Vin) à list(Kinter, Vinter) 
 

Reduce function: 
(Kinter, list(Vinter)) à list(Kout, Vout) 



Example: Word Count 

def mapper(line): 
    for word in line.split(): 
        output(word, 1) 
 
 
def reducer(key, values): 
    output(key, sum(values)) 
 



Word Count Execution 
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Word Count Execution 
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Fault Recovery 
If a task crashes: 
–  Retry on another node 
–  If the same task repeatedly fails, end the job 
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Fault Recovery 
If a task crashes: 
–  Retry on another node 
–  If the same task repeatedly fails, end the job 

Requires user code to be deterministic 
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Fault Recovery 

If a node crashes: 
–  Relaunch its current tasks on other nodes 
    What about task inputs ? File system replication 
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Fault Recovery 

If a task is going slowly (straggler): 
–  Launch second copy of task on another node 
–  Take the output of whichever finishes first 
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DISCUSSION: Programmability 

Most real applications require multiple MR steps 
–  Google indexing pipeline: 21 steps 
–  Analytics queries (e.g. sessions, top K): 2-5 steps 
–  Iterative algorithms (e.g. PageRank): 10’s of steps 

 
Multi-step jobs create spaghetti code 
–  21 MR steps à 21 mapper and reducer classes 



DISCUSSION: Performance 

MR only provides one pass of computation 
–  Must write out data to file system in-between 
 

Expensive for apps that need to reuse data 
–  Multi-step algorithms (e.g. PageRank) 
–  Interactive data mining 



QUESTIONS / DISCUSSION ? 


