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§ Why PipeDream? 

§ Pipeline Parallelism   
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§ Scheduling 

§ Learning 

§ Implementation 

§ Experimentation 
 



§ Distbelief and Adam – Using Commodity Machines 

§ TensorFlow – Generalization and giving user the power to 
code  

§ Problem - Time and Resource consumption. Imagine 
billions of parameters in a word imbedding/ image 
processing task. 

 



 

§ Solution – Parallelism! 10 points to Gryffindor! 

 

§ Naïve parallelism can be detrimental, as quality 
matters and also can blow up computation or 
communication overheads down the road.   

 

§ Time per pass can decrease, but number of passes 
increase! Accuracy/Convergence impacted. 

 
§  Total Time = Time per epoch * Number of epochs  
for a given accuracy. 

 



§ Training contains multiple epochs over the entire data. 

§ In each epoch, model trains over all the inputs in the dataset using 
steps. 

§ In each step, the current model makes a prediction from a small set of 
training samples called minibatch. This process is called forward pass. 

§ Minibatch fed to layer 1, each layer computes a function using learned 
parameters and passes to next layer. The final output class prediction 
is compared to actual value and the error is propagated back  
in a Backward Pass to update the weights. 



M
1 

M
3 

M
2 

M
1 

M
3 

M
2 



•  Under-Utilization 
•  Unknown Model Splitting Technique 



As number of workers 
increase, the 
communication overhead 
increases.  



§ PipeDream 
 

§ Pipeline Parallelism = MP + DP + 
Pipelining 



•  Entire Model broken into Stages 

•  Each Stage mapped to a Machine 
that performs both backward and 
forward pass 

 
•  Multiple minibatches inserted 

together to make use of all 
machines. 



•  Benefits over Data Parallelism :  

 
•  Pipelining communicates less 

•  output of layer much smaller than parameter size 

 

•  Pipelining overlaps computation and 
communication 

•   forward and backward pass has a lot of 
communication and computation overlap for 
subsequent minibatches, so, better hardware 
efficiency. 



§ Automatic Partitioning 

§ Scheduling 

§ Effective Learning 



1. Each Stage performs roughly same amount of 
work 

2. Inter-stage data communication is minimum 

Goals 



§ Profiling : Dry run the model on a single machine to 
estimate for each layer : 

§ Total Forward and Backward Computation time. 

§ Size of output activation and input gradients. 

§ Size of parameters 

 



§ Partitioning Algorithm  : 
§ Computes :  

§ Partitioning of layers into stages 

§ Replication Factor for each stage 

§ Minibatches to keep pipeline busy 

§ Goal is Minimize the Overall Time in the Pipeline 
System  
ie. Minimizing the time for the slowest stage. 



•  Let T(i → j, m) denote the time taken by a single stage spanning layers i 
through j, replicated over m machines. 

•  Let A(j, m) denote the time taken by the slowest stage between layers 1 
and j using m machines.  

•  Goal – Find A(N, M), and the corresponding partitioning where N is the 
number of layers and M is the number of Machines. 

1. 2. 



Alternate between Forward and Backward Work – 
1F1B 



§  Mixing of Forward and Backward passes with different versions of 
parameters can lead to incorrect/slow learning.  

§  Weight Stashing – Maintaining multiple versions of weight for Forward and 
Backward pass in a stage. In Forward – Use latest version, in Backward – use 
the corresponding version 

§  Vertical Sync – After performing the backward pass of a minibatch using an 
older version, each stage applies latest updates to use new weights. 



§ Initialization Step 

§ Parameter State 

§ Intermediate State 

§ Checkpointing 



§  Cluster A – Fast Network, Slow GPU 

§  Cluster B – Fast GPU, Slow Network 








