

- Varun Batra

AGENDA

- Why PipeDream?
- Pipeline Parallelism
 - Partitioning
 - Scheduling
 - Learning
- Implementation
- Experimentation

THE JOURNEY SO FAR....

Distbelief and Adam – Using Commodity Machines

TensorFlow – Generalization and giving user the power to code

 Problem - Time and Resource consumption. Imagine billions of parameters in a word imbedding/ image processing task.

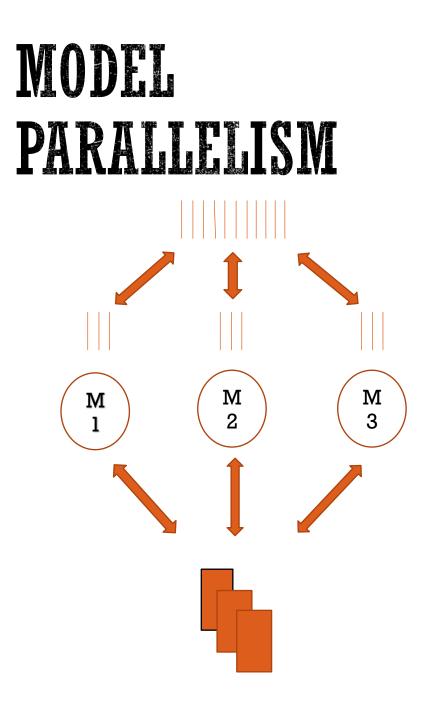
THE JOURNEY SO FAR....

- Solution Parallelism! 10 points to Gryffindor!
- Naïve parallelism can be detrimental, as quality matters and also can blow up computation or communication overheads down the road.
- Time per pass can decrease, but number of passes increase! Accuracy/Convergence impacted.
- Total Time = Time per epoch * Number of epoc for a given accuracy.

WHAT IS A MINIBATCH?

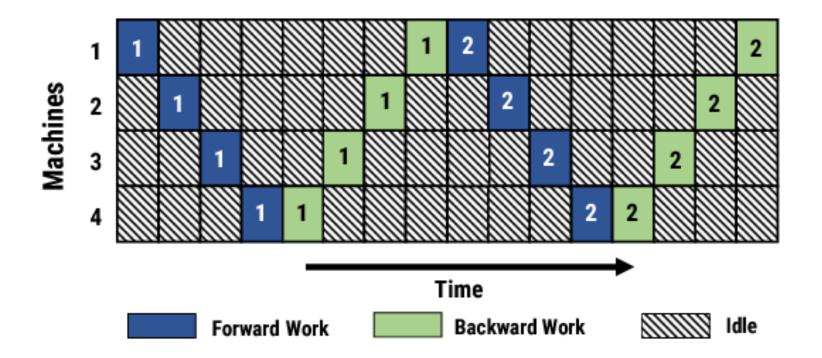
Training contains multiple epochs over the entire data.

- In each epoch, model trains over all the inputs in the dataset using steps.
- In each step, the current model makes a prediction from a small set of training samples called minibatch. This process is called forward pass.
- Minibatch fed to layer 1, each layer computes a function using learned parameters and passes to next layer. The final output class prediction is compared to actual value and the error is propagated back in a Backward Pass to update the weights.



DATA PARALLELISM Μ Μ Μ 2 3 1 WISC UNIVERSITY OF WISCONSIN-MADISON

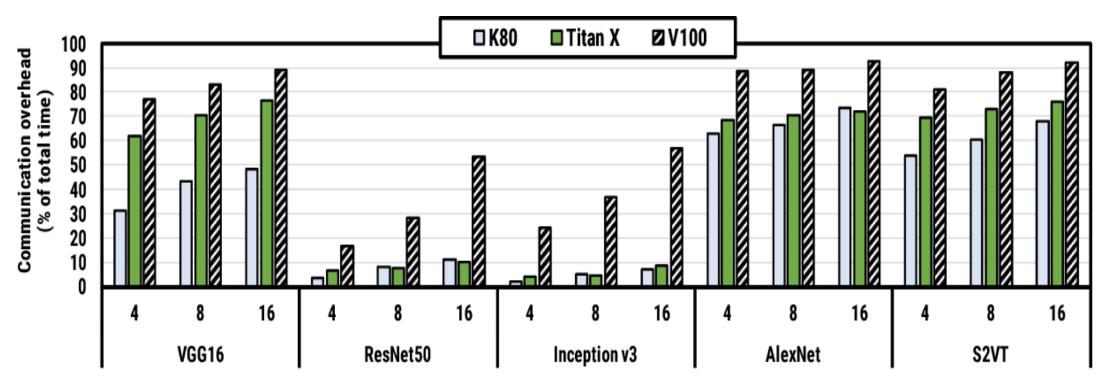
MODEL PARALLELISM IMPACT



- Under-Utilization
- Unknown Model Splitting Technique

DATA PARALLELISM IMPACT

As number of workers increase, the communication overhead increases.



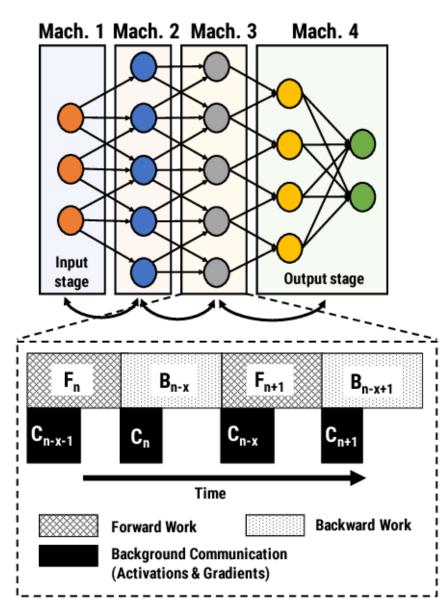
RACE BETWEEN COMMUNICATION V/S COMPUTATION

SOLUTION OF SOLUTIONS?

PipeDream

Pipeline Parallelism = MP + DP + Pipelining

PIPELINE PARALLELISM



- Entire Model broken into Stages
- Each Stage mapped to a Machine that performs both backward and forward pass
- Multiple minibatches inserted together to make use of all machines.

PIPELINE PARALLELISM

- Benefits over Data Parallelism :
 - Pipelining communicates less
 - output of layer much smaller than parameter size
 - Pipelining overlaps computation and communication
 - forward and backward pass has a lot of communication and computation overlap for subsequent minibatches, so, better hardware efficiency.

CHALLENGES HANDLED

- Automatic Partitioning
- Scheduling
- Effective Learning

AUTOMATIC PARTITIONING

1.Each Stage performs roughly same amount of work

2. Inter-stage data communication is minimum

AUTOMATIC PARTITIONING

 Profiling : Dry run the model on a single machine to estimate for each layer :

Total Forward and Backward Computation time.

Size of output activation and input gradients.

Size of parameters

AUTOMATIC PARTITIONING

- Partitioning Algorithm :
 - Computes :
 - Partitioning of layers into stages
 - Replication Factor for each stage
 - Minibatches to keep pipeline busy
 - Goal is Minimize the Overall Time in the Pipeline System
 Minimizing the time for the slowest stage.

$$T(i \to j, m) = \frac{1}{m} \max\left(\sum_{l=i}^{j} T_l, \sum_{l=i}^{j} W_l^m\right)$$

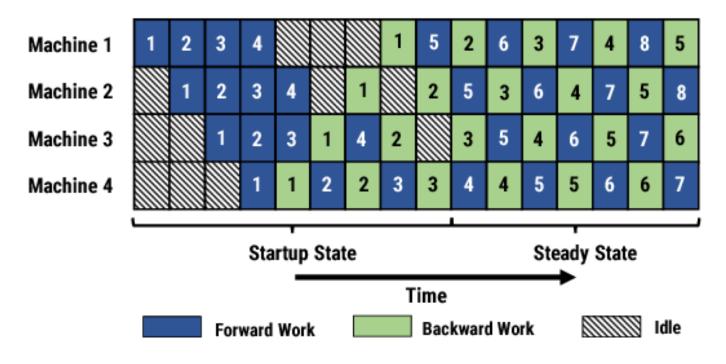
- Let T(i → j, m) denote the time taken by a single stage spanning layers i through j, replicated over m machines.
- Let A(j, m) denote the time taken by the slowest stage between layers 1 and j using m machines.
- Goal Find A(N, M), and the corresponding partitioning where N is the number of layers and M is the number of Machines.

1.
$$A(j,m) = T(1 \to j,m)$$
 2. $A(j,m) = \min_{1 \le i < j} \min_{1 \le m' < m} \max \begin{cases} A(i,m-m') \\ 2 \cdot C_i \\ T(i+1 \to j,m') \end{cases}$

Initialization. $A(1, m) := T(1 \rightarrow 1, m)$, where T(.) is as defined above, and *m* is varied from 1 through *M* (the total number of machines). $A(i, 1) := T(1 \rightarrow i, 1)$, where *i* is varied from 1 through *N* (the total number of layers in the model).

SCHEDULING

Alternate between Forward and Backward Work – 1F1B



EFFECTIVE LEARNING

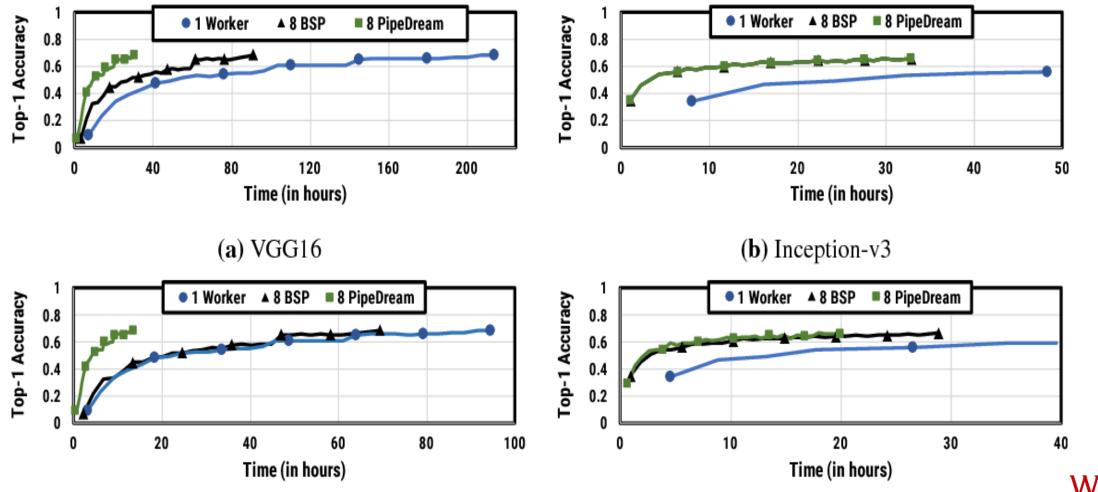
- Mixing of Forward and Backward passes with different versions of parameters can lead to incorrect/slow learning.
- Weight Stashing Maintaining multiple versions of weight for Forward and Backward pass in a stage. In Forward – Use latest version, in Backward – use the corresponding version
- Vertical Sync After performing the backward pass of a minibatch using an older version, each stage applies latest updates to use new weights.

IMPLEMENTATION

- Initialization Step
- Parameter State
- Intermediate State
- Checkpointing

EXPERIMENTATION

- Cluster A Fast Network, Slow GPU
- Cluster B Fast GPU, Slow Network

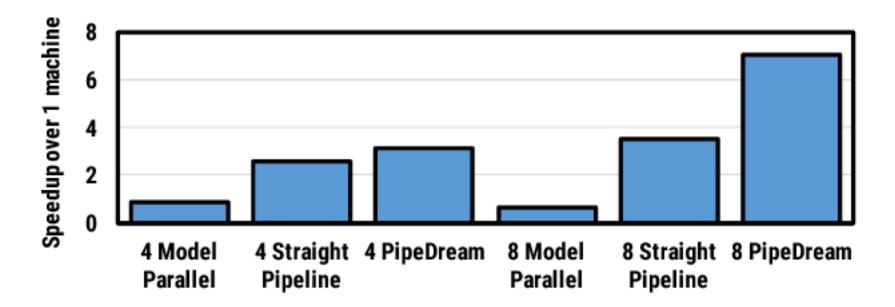


EXPERIMENTATION

PIPELINE VS DATA PARALLELISM

DNN Model	# Machines (Cluster)	BSP speedup over 1 machine	PipeDream speedup over 1 machine	PipeDream speedup over BSP	PipeDream communication reduction over BSP
VGG16	4 (A) 8 (A)	1.47× 2.35×	3.14× 7.04×	2.13× 2.99×	90% 95%
	16 (A) 8 (B)	3.28× 1.36×	9.86× 6.98×	3.00× 5.12×	91% 95%
Inception-v3	8 (A) 8 (B)	7.66× 4.74×	7.66× 6.88×	1.00× 1.45×	0% 47%
S2VT	4 (A)	1.10×	3.34×	3.01×	95%

MODEL VS PIPELINE VS PIPEDREAM



THANK YOU!

