
- Varun Batra

§ Why PipeDream?

§ Pipeline Parallelism
§ Partitioning

§ Scheduling

§ Learning

§ Implementation

§ Experimentation

§ Distbelief and Adam – Using Commodity Machines

§ TensorFlow – Generalization and giving user the power to
code

§ Problem - Time and Resource consumption. Imagine
billions of parameters in a word imbedding/ image
processing task.

§ Solution – Parallelism! 10 points to Gryffindor!

§ Naïve parallelism can be detrimental, as quality
matters and also can blow up computation or
communication overheads down the road.

§ Time per pass can decrease, but number of passes
increase! Accuracy/Convergence impacted.

§  Total Time = Time per epoch * Number of epochs
for a given accuracy.

§ Training contains multiple epochs over the entire data.

§ In each epoch, model trains over all the inputs in the dataset using
steps.

§ In each step, the current model makes a prediction from a small set of
training samples called minibatch. This process is called forward pass.

§ Minibatch fed to layer 1, each layer computes a function using learned
parameters and passes to next layer. The final output class prediction
is compared to actual value and the error is propagated back
in a Backward Pass to update the weights.

M
1

M
3

M
2

M
1

M
3

M
2

•  Under-Utilization
•  Unknown Model Splitting Technique

As number of workers
increase, the
communication overhead
increases.

§ PipeDream

§ Pipeline Parallelism = MP + DP +
Pipelining

•  Entire Model broken into Stages

•  Each Stage mapped to a Machine
that performs both backward and
forward pass

•  Multiple minibatches inserted

together to make use of all
machines.

•  Benefits over Data Parallelism :

•  Pipelining communicates less

•  output of layer much smaller than parameter size

•  Pipelining overlaps computation and
communication

•  forward and backward pass has a lot of
communication and computation overlap for
subsequent minibatches, so, better hardware
efficiency.

§ Automatic Partitioning

§ Scheduling

§ Effective Learning

1. Each Stage performs roughly same amount of
work

2. Inter-stage data communication is minimum

Goals

§ Profiling : Dry run the model on a single machine to
estimate for each layer :

§ Total Forward and Backward Computation time.

§ Size of output activation and input gradients.

§ Size of parameters

§ Partitioning Algorithm :
§ Computes :

§ Partitioning of layers into stages

§ Replication Factor for each stage

§ Minibatches to keep pipeline busy

§ Goal is Minimize the Overall Time in the Pipeline
System
ie. Minimizing the time for the slowest stage.

•  Let T(i → j, m) denote the time taken by a single stage spanning layers i
through j, replicated over m machines.

•  Let A(j, m) denote the time taken by the slowest stage between layers 1
and j using m machines.

•  Goal – Find A(N, M), and the corresponding partitioning where N is the
number of layers and M is the number of Machines.

1. 2.

Alternate between Forward and Backward Work –
1F1B

§  Mixing of Forward and Backward passes with different versions of
parameters can lead to incorrect/slow learning.

§  Weight Stashing – Maintaining multiple versions of weight for Forward and
Backward pass in a stage. In Forward – Use latest version, in Backward – use
the corresponding version

§  Vertical Sync – After performing the backward pass of a minibatch using an
older version, each stage applies latest updates to use new weights.

§ Initialization Step

§ Parameter State

§ Intermediate State

§ Checkpointing

§  Cluster A – Fast Network, Slow GPU

§  Cluster B – Fast GPU, Slow Network

