PRETZEL:Opening the Black Box of
Machine Learning Prediction Serving
Systems

Presented by Qinyuan Sun

Slides are modified from first author Yunseong Lee’s slides

\\\

Outline

* Prediction Serving Systems

» Limitations of Black Box Approaches

« PRETZEL: White-box Prediction Serving System
» Evaluation

* Conclusion

/

2. Modelsare deployed and served together |

Machine Learning Prediction Serving

1. Models are learned fromdata Performance goal:

1) Low latency
) High throughput

3) Minimal resource usage

i

Data

o]

Training : Prediction serving

State-of-the-art
¢ Clipper «

“riselq)

Google

 Re-use the same code in training phase

 Encapsulate all operations
into a function call (e.g.,predict())

 Apply external optimizations

ML Prediction Serving Systems:

l‘\ TF Serving ML.Net

B® Microsoft

N\
“Pretzel is tasty” ———
= jsunor s - B
=+ Assumption: models are black box .’

Replication

Result
caching

-

Request
Batching

ES —— ’
Cat ~— 1T —
_)

Prediction Serving
System

ensemble

Text
Analysis

Image
Recognition

How does ModelsLook Like inside Boxes?

Pretzel is tasty
(text)

O Vs, ®

(positive vs. negative)

<Example: Sentiment Analysis>

N
I

N
I

How do ModelsLook inside Boxes?

Pretzel is tasty —

DAG of Operators

/

Featurizers \
Predictor

ogistic
Regression

!

<Example: Sentiment Analysis>

How do ModelsLook inside Boxes?

N DAG of Operators r
Extract Compute
N-grams } | final score

ogistic

Pretzel is tasty —

Split text 2 Merge two
into tokens vectors /

s |\ J

MO

oD

<Example: Sentiment Analysis>

Many Models Have Similar Structures

» Many part of a model can be re-used in other models

i Z P>
« Customer personalization, Templates, Transfer Learning C
K::o~<>

« Identical set of operators with differentparameters

C

° @

B® Microsoft

Outline

» Limitations of Black BoxApproaches

« PRETZEL: White-box Prediction Serving System
» Evaluation

* Conclusion

Limitation 1: Resource Waste

« Resources are isolated across Blackboxes [

1. Unable to share memoryspace

L
=» Waste memory to maintain duplicate .’
objects (despite similarities between

models) i’

Nocoordination for CPU resources between boxes _

=>» Serving many models can use too many threads
machine

N
I

Limitation 2: Inconsideration for Ops’ Characteristics

1. Operators have different performance characteristics

» Concat materializes avector
» LogReqg takes only 0.3% (contrary to the training phase)

2. There can be a better plan if such characteristics are considered
» Re-use the existing vectors
 Apply in-place update inLogReg

B CharNgram [JWordNgram [JConcat W LogReg I Others
0.3

! 4. 27 ok
0% ' 40% 60% | 100
80%

20 %
% Latency breakdown ° B Microsoft

Limitation 3: Lazy Initialization

» ML.Net initializes code and memory lazily (efficient in training phase)

* Run 250 Sentiment Analysis models 100 times
=>» cold: first execution /hot: average of the rest99

I * Long-tail latency in the coldcase
— » Code analysis, Just-in-time (JIT) compilation, memory allocation, etc
I « Difficult to provide strong Service-Level-Agreement (SLA)

. . . 280.0

100

Bi
. 807 S|
;.

X 601 !

w :

8407 : cold |
20 — hot |
0 S\ . i I

10 10! 102

Latency (ms, log-scaled)

B® Microsoft

Outline

* PRETZEL: White-box Prediction Serving System
» Evaluation
* Conclusion

PRETZEL: White-box Prediction Serving

*We analyze models to optimize the internal execution

*We let models co-exist on the same runtime,
sharing computation and memoryresources

*We optimize models in twodirections:

1. End-to-end optimizations
2. Multi-model optimizations

End-to-End Optimizations

Optimize the execution of individual models from start to end

1. [Ahead-of-time Compilation]
Compile operators’ code inadvance
- No JToverhead

2. [Vector pooling]
Pre-allocate data structures
- No memory allocation on the data path

Multi-model Optimizations

Share computation and memory acrossmodels
1. [Object Store]

Share Operators parameters/weights
—> Maintain only one copy
2. [Sub-plan Materialization]

Reuse intermediate results computed by othermodels
—> Save computation

N
I

System Components

3. Runtime: Execute inference queries

1. Flour: Intermediate Representation
Runtlme
var fContext = B

| var Tokenizer =. ’.;
N return fPrgm.Plan(); FCE SChedUler
—— Store

2. Oven: Compiler/QOptimizer 4. FrontEnd: Handle user requests

,;-,g rnend

17

Prediction Serving with PRETZEL

1. Offline _—
» Analyze structural information of models - " Ole
» Build ModelPlan for optimal execution [EErs
* Register ModelPlan toRuntime Model o
Plan

2. Online

» Handle prediction requests

» Coordinate CPU & memoryresources " Frontend [l

—
I

Runtime

Runtime

System Design: Offline Phase

1. Translate Model into FlourProgram

<Model>

var
var

var
var
var

<Flour Program>

fContext = new FlourContext(...)
tTokenizer = fContext.CSV
.FromText (fields, fieldsType, sep)
.Tokenize () ;

tCNgram tTokenizer.CharNgram (numCNgrms,
tWNgram tTokenizer.WordNgram (numWNgrms,
fPrgrm = tCNgram
.Concat (tWNgram)
.ClassifierBinaryLinear (cParams) ;

return fPrgrm.Plan()

18

~e ~e

optimizer

{ Rule-based

System Design: Offline Phase

2. Oven optimizer/compiler build ModelPlan | itz

& Remove Concat

| <Flour Program>
Nvar fContext = new FlourContext (...) _'O -
s tTokenizer = fContext.CSV
I .FromText (fields,

fieldsType, sep)
.Tokenize () ; Group ops
into stages
var tCNgram = tTokenizer.CharNgram (numCNgrms,

L) var EWNgram - /<Model Plan> Stage 1

tTokenizer.WordNgram (numWNgrms, ...); var fPrgrm ﬂ:)
= tCNgram .
.Concat (tWNgram) I—Oglcal DAG —_
.ClassifierBinaryLinear (cParams) ; -
return fPrgrm.Plan(); @

Stage 2

19

optimizer

[Rule-based

System Design: Offline Phase

2. Oven optimizer/compiler build Model Plan | i rcsicts

& Remove Concat

<Flour Program> e.g., Dictionary,
_— var fContext = new FlourContext (...) N'gram I—ength _'O -
_—, Var tTokenizer = fContext.CSV
.FromText (fields, i
Group ops
into stages ‘

.Tokenize () ;

var tCNgram

<) -
tTokenizer.WordNgray ‘ o) A Y AMOdeI Plan Stage 1
- rooren ~ : Logical DAG
return fPrgrm.Plan - Parameters @ '
IR c.c., dense vs. sparse, Statistics
maximum vector size Stage 2

System Design: Offline Phase

3. Model Plan is registered to Runtime

Logical Stages Physical Stages
Model1 51 >2
Logical DAG *te 2o
A AOG

Parameters

Statistics s Object Store
\-
= " u

1. Store parameters &
mapping between
logical stages

2. Find the most

efficient physical impl.
using &

i “<Model Plan>

System Design: Offline Phase

3. Register selected

3. ModelPlan is registered to Runtime physical stages to

Catalog

Logical Stages

i “<Model Plan> odel 1 Physical Stages

Catalog

@A
x A

S1 S2
Logical DAG » M~ o & =
Parameters > Y
. N-gram length
Statistics . Object Store 1vs.3 Sparse vs. Dense
\-
= 0w

2. Find the most

1. Store parameters &
mapping between
logical stages

efficient physical impl.
using &

—
I

System Design: Online Phase

S1 ST’

2. Instantiate > @2,

physical stages
along with :

parameters

<Model1, “Pretzel istasty”> =

1. When aprediction

request arrives

Logical Stages
Model1 Model2

4. Send result back
to Client

3. Execute stages using
thread-pools,
managed by Scheduler

Outline

 Evaluation
* Conclusion

Evaluation

* Q. How PRETZEL improves performance overblack-box approaches?
« in terms of latency, memory and throughput

500 Models from Microsoft Machine Learning Team
250 Sentiment Analysis (Memory-bound)
« 250 Attendee Count (Compute-bound)

« System configuration
* 16 Cores CPU, 32GBRAM
* Windows 10, .Net core2.0

—
I

Evaluation: Latency

 Micro-benchmark (No server-client communication)
* Score 250 Sentiment Analysis models 100 times for each

=
o
—

» Compare ML.Net vs. PRETZEL 02 0.8
100 P = e okl
45 . .

S MLNet w0 £ ﬁ»
P99 (hot) 0.6 0.2 o o . _
P99 (cold) 8.1 08 43 E y | |

O - '

Worst (cold) 280.2 6.2 . P

291 S better
@ 20 2 T 100 ' '
Latency (ms, log-

scaled)

Evaluation: Memory

» Measure Cumulative Memory Usage after loading 250 models
« Attendee Count models (smaller size than Sentiment Analysis)
* 4 settings for Comparison

Y 32GB

o :
Settings Shared Shared 2 4 ocHl ML.Net + Clipper 9.7GB_|

- Runtime [0 a2

ML.Net +Clipper §§ 1GB} e : 2. t
ML.Net J v 8 7o

>
PRETZEL without g 0.1GB; '
ObjectStore E fee=z better
PRETZEL 4 4 oM 00100 150 200 250 -

Number of pipelines

Evaluation: Throughput

* Micro-benchmark
* Score 250 Attendee Count models 1000 times for each
* Request 1000queries in a batch
» Compare ML.Net vs. PRETZEL

~ :
"I Close toideal

scalability

-
93]

|
o
1

More results

in the paper!

Throughput (K

QBS)

Num. CPU Cores

Conclusion
» PRETZEL is the first white-box prediction serving system for ML pipelines

* By using models’ structural info, we enable two types of optimizations:
 End-to-end optimizations generate efficient execution plans for a model
 Multi-model optimizations let models share computation and memory resources

 Our evaluation shows that PRETZEL can improve performance compared to

Black-box systems (e.g., ML.Net)
 Decrease latency and memory footprint
* Increase resource utilization and throughput

* A lot of external optimizations used by Cipper are orthogonal to PRETZEL

Thank you!
Questions?

