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2. Modelsare deployed and served together |

Machine Learning Prediction Serving

1. Models are learned fromdata Performance goal:

1) Low latency
) High throughput

3) Minimal resource usage
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State-of-the-art
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 Re-use the same code in training phase

 Encapsulate all operations
into a function call (e.g.,predict())

 Apply external optimizations
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How does ModelsLook Like inside Boxes?

Pretzel is tasty
(text)

O Vs, ®

(positive vs. negative)

<Example: Sentiment Analysis>
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How do ModelsLook inside Boxes?

Pretzel is tasty —

DAG of Operators
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<Example: Sentiment Analysis>




How do ModelsLook inside Boxes?
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<Example: Sentiment Analysis>




Many Models Have Similar Structures

» Many part of a model can be re-used in other models

i Z P>
« Customer personalization, Templates, Transfer Learning C
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« Identical set of operators with differentparameters
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Limitation 1: Resource Waste

« Resources are isolated across Blackboxes [

1. Unable to share memoryspace

L
=» Waste memory to maintain duplicate .’
objects (despite similarities between

models) i’

Nocoordination for CPU resources between boxes \_

=>» Serving many models can use too many threads
machine
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Limitation 2: Inconsideration for Ops’ Characteristics

1. Operators have different performance characteristics

» Concat materializes avector
» LogReqg takes only 0.3% (contrary to the training phase)

2. There can be a better plan if such characteristics are considered
» Re-use the existing vectors
 Apply in-place update inLogReg

B CharNgram [JWordNgram [JConcat W LogReg I Others
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Limitation 3: Lazy Initialization

» ML.Net initializes code and memory lazily (efficient in training phase)

* Run 250 Sentiment Analysis models 100 times
=>» cold: first execution /hot: average of the rest99

I * Long-tail latency in the coldcase
— » Code analysis, Just-in-time (JIT) compilation, memory allocation, etc
I « Difficult to provide strong Service-Level-Agreement (SLA)
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PRETZEL: White-box Prediction Serving

*We analyze models to optimize the internal execution

*We let models co-exist on the same runtime,
sharing computation and memoryresources

*We optimize models in twodirections:

1. End-to-end optimizations
2. Multi-model optimizations



End-to-End Optimizations

Optimize the execution of individual models from start to end

1. [Ahead-of-time Compilation]
Compile operators’ code inadvance
- No JToverhead

2. [Vector pooling]
Pre-allocate data structures
- No memory allocation on the data path




Multi-model Optimizations

Share computation and memory acrossmodels
1. [Object Store]

Share Operators parameters/weights
—> Maintain only one copy
2. [Sub-plan Materialization]

Reuse intermediate results computed by othermodels
—> Save computation
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System Components

3. Runtime: Execute inference queries

1. Flour: Intermediate Representation
Runtlme
var fContext = B

| var Tokenizer =. ’.;
N return fPrgm.Plan(); FCE SChedUler
—— Store

2. Oven: Compiler/QOptimizer 4. FrontEnd: Handle user requests

,;-,g rnend
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Prediction Serving with PRETZEL

1. Offline _—
» Analyze structural information of models - " Ole
» Build ModelPlan for optimal execution [EErs
* Register ModelPlan toRuntime Model o
Plan

2. Online

» Handle prediction requests

» Coordinate CPU & memoryresources " Frontend [l

—
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Runtime

Runtime




System Design: Offline Phase

1. Translate Model into FlourProgram

<Model>

var
var

var
var
var

<Flour Program>

fContext = new FlourContext(...)
tTokenizer = fContext.CSV
.FromText (fields, fieldsType, sep)
.Tokenize () ;

tCNgram tTokenizer.CharNgram (numCNgrms,
tWNgram tTokenizer.WordNgram (numWNgrms,
fPrgrm = tCNgram
.Concat (tWNgram)
.ClassifierBinaryLinear (cParams) ;

return fPrgrm.Plan()
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optimizer

{ Rule-based

System Design: Offline Phase

2. Oven optimizer/compiler build ModelPlan | itz

& Remove Concat

| <Flour Program>
Nvar fContext = new FlourContext (...) _'O -
s tTokenizer = fContext.CSV
I .FromText (fields,

fieldsType, sep)
.Tokenize () ; Group ops
into stages
var tCNgram = tTokenizer.CharNgram (numCNgrms,

L) var EWNgram - /<Model Plan> Stage 1

tTokenizer.WordNgram (numWNgrms, ...); var fPrgrm ﬂ:)
= tCNgram .
.Concat (tWNgram) I—Oglcal DAG —_
.ClassifierBinaryLinear (cParams) ; -
return fPrgrm.Plan(); @

Stage 2
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optimizer

[ Rule-based

System Design: Offline Phase

2. Oven optimizer/compiler build Model Plan | i rcsicts

& Remove Concat

<Flour Program> e.g., Dictionary,
_— var fContext = new FlourContext (...) N'gram I—ength _'O -
_—, Var tTokenizer = fContext.CSV
.FromText (fields, i
Group ops
into stages ‘

.Tokenize () ;

var tCNgram

<) -
tTokenizer.WordNgray ‘ o) A Y AMOdeI Plan Stage 1
- rooren ~ : Logical DAG
return fPrgrm.Plan - Parameters @ '
IR c.c., dense vs. sparse, Statistics
maximum vector size Stage 2




System Design: Offline Phase

3. Model Plan is registered to Runtime

Logical Stages Physical Stages
Model1 51 >2
Logical DAG *te 2o
A AOG

Parameters

Statistics s Object Store
\-
= " u

1. Store parameters &
mapping between
logical stages

2. Find the most

efficient physical impl.
using &

i “<Model Plan>



System Design: Offline Phase

3. Register selected

3. ModelPlan is registered to Runtime physical stages to

Catalog

Logical Stages

i “<Model Plan> odel 1 Physical Stages

Catalog

@A
x A

S1 S2
Logical DAG » M~ o & =
Parameters > Y
. N-gram length
Statistics . Object Store 1vs.3 Sparse vs. Dense
\-
= 0w

2. Find the most

1. Store parameters &
mapping between
logical stages

efficient physical impl.
using &
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System Design: Online Phase

S1 ST’

2. Instantiate > @2,

physical stages
along with :

parameters

<Model1, “Pretzel istasty”> =

1. When aprediction

request arrives

Logical Stages
Model1 Model2

4. Send result back
to Client

3. Execute stages using
thread-pools,
managed by Scheduler




Outline

 Evaluation
* Conclusion




Evaluation

* Q. How PRETZEL improves performance overblack-box approaches?
« in terms of latency, memory and throughput

500 Models from Microsoft Machine Learning Team
250 Sentiment Analysis (Memory-bound)
« 250 Attendee Count (Compute-bound)

« System configuration
* 16 Cores CPU, 32GBRAM
* Windows 10, .Net core2.0
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Evaluation: Latency

 Micro-benchmark (No server-client communication)
* Score 250 Sentiment Analysis models 100 times for each
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Evaluation: Memory

» Measure Cumulative Memory Usage after loading 250 models
« Attendee Count models (smaller size than Sentiment Analysis)
* 4 settings for Comparison

Y  32GB

o :
Settings Shared Shared 2 4 ocHl ML.Net + Clipper 9.7GB_|

- Runtime [0 a2

ML.Net +Clipper §§ 1GB} e : 2. t
ML.Net J v 8 7o

>
PRETZEL without g 0.1GB; '
ObjectStore E  fee=z better
PRETZEL 4 4 oM 00100 150 200 250 -

Number of pipelines




Evaluation: Throughput

* Micro-benchmark
* Score 250 Attendee Count models 1000 times for each
* Request 1000queries in a batch
» Compare ML.Net vs. PRETZEL
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"I Close toideal

scalability
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More results

in the paper!
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Conclusion
» PRETZEL is the first white-box prediction serving system for ML pipelines

* By using models’ structural info, we enable two types of optimizations:
 End-to-end optimizations generate efficient execution plans for a model
 Multi-model optimizations let models share computation and memory resources

 Our evaluation shows that PRETZEL can improve performance compared to

Black-box systems (e.g., ML.Net)
 Decrease latency and memory footprint
* Increase resource utilization and throughput

* A lot of external optimizations used by Cipper are orthogonal to PRETZEL



Thank you!
Questions?




