

PRETZEL:Opening the Black Box of Machine Learning Prediction Serving Systems

Presented by Qinyuan Sun

Slides are modified from first author Yunseong Lee's slides

Outline

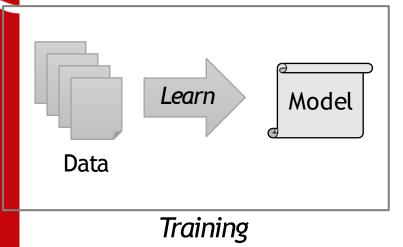
- Prediction Serving Systems
- Limitations of Black Box Approaches
- PRETZEL: White-box Prediction Serving System
- Evaluation
- Conclusion

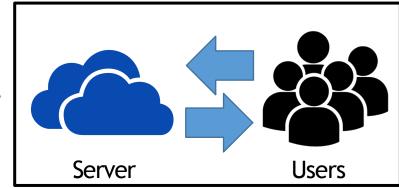
Machine Learning Prediction Serving

- Models are learned from data
- 2. Models are deployed and served together

Performance goal:

- 1) Low latency
- 2) High throughput
- 3) Minimal resource usage

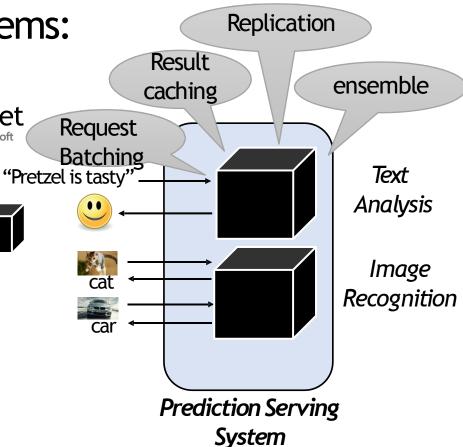




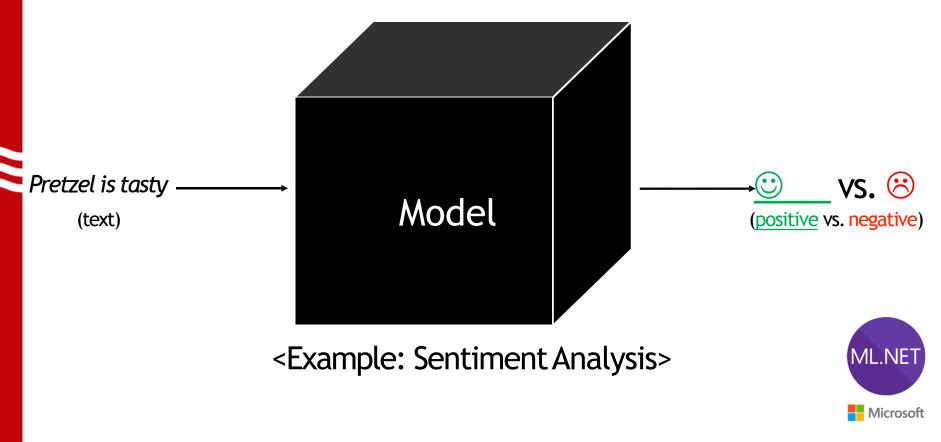
Prediction serving

ML Prediction Serving Systems: State-of-the-art

- Re-use the same code in training phase
- Encapsulate all operations into a function call (e.g.,predict())
- Apply external optimizations



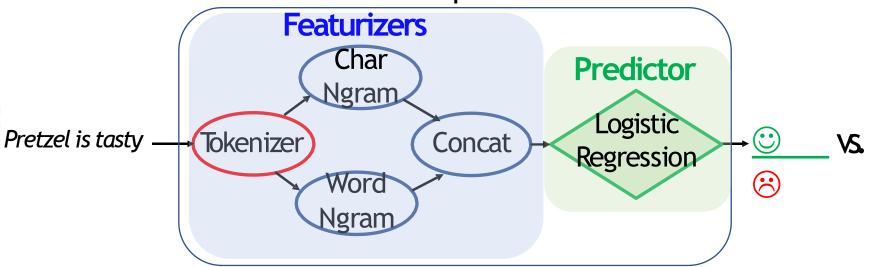
How does Models Look Like inside Boxes?



6

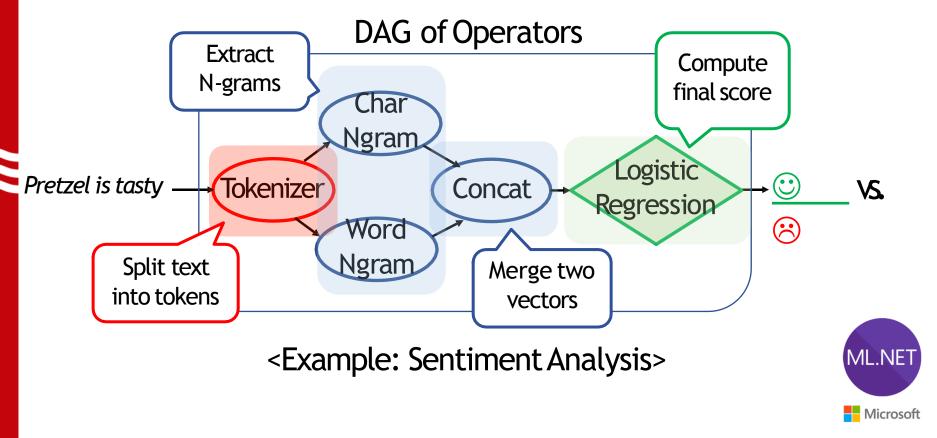
How do Models Look inside Boxes?

DAG of Operators



<Example: Sentiment Analysis>

How do Models Look inside Boxes?

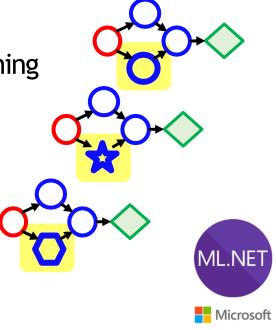


Many Models Have Similar Structures

Many part of a model can be re-used in other models

• Customer personalization, Templates, Transfer Learning

• Identical set of operators with different parameters

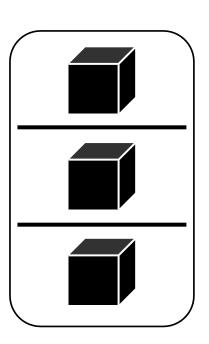


Outline

- Prediction Serving Systems
- Limitations of Black Box Approaches
- PRETZEL: White-box Prediction Serving System
- Evaluation
- Conclusion

Limitation 1: Resource Waste

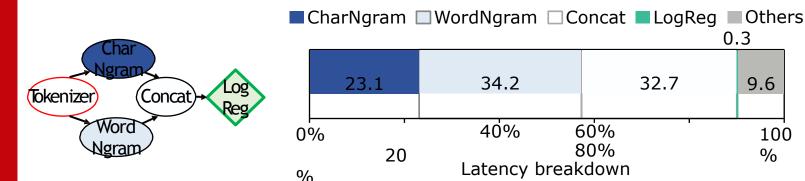
- Resources are isolated across Blackboxes
- 1. Unable to share memory space
 - → Waste memory to maintain duplicate objects (despite similarities between models)
- 2. No coordination for CPU resources between boxes
 - → Serving many models can use too many threads



machine

Limitation 2: Inconsideration for Ops' Characteristics

- 1. Operators have different performance characteristics
 - Concat materializes a vector
 - LogReg takes only 0.3% (contrary to the training phase)
- 2. There can be a better plan if such characteristics are considered
 - Re-use the existing vectors
 - Apply in-place update in LogReg



0.3

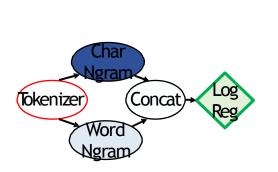
9.6

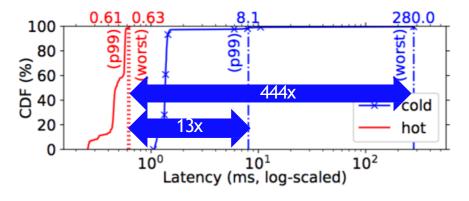
100

%

Limitation 3: Lazy Initialization

- ML. Net initializes code and memory lazily (efficient in training phase)
- Run 250 Sentiment Analysis models 100 times
 - → cold: first execution / hot: average of the rest99
- Long-tail latency in the cold case
 - Code analysis, Just-in-time (JIT) compilation, memory allocation, etc.
 - Difficult to provide strong Service-Level-Agreement (SLA)





Outline

- (Black-box) Prediction Serving Systems
- Limitations of Black Box Approaches
- PRETZEL: White-box Prediction Serving System
- Evaluation
- Conclusion

PRETZEL: White-box Prediction Serving

- •We analyze models to optimize the internal execution
- We let models co-exist on the same runtime, sharing computation and memory resources
- •We optimize models in two directions:
 - 1. End-to-end optimizations
 - 2. Multi-model optimizations

End-to-End Optimizations

Optimize the execution of individual models from start to end

- 1. [Ahead-of-time Compilation]
 Compile operators' code in advance
 - → No JIToverhead
- 2. [Vector pooling]

Pre-allocate data structures

→ No memory allocation on the data path

Multi-model Optimizations

Share computation and memory across models

- 1. [Object Store]
 - Share Operators parameters/weights
 - → Maintain only one copy
- 2. [Sub-plan Materialization]
 - Reuse intermediate results computed by other models
 - → Save computation

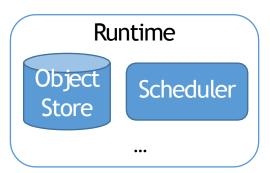
System Components

1. Flour: Intermediate Representation

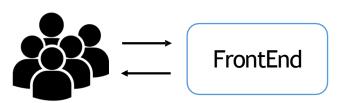
```
var fContext = ...;
var Tokenizer = ...;
return fPrgm.Plan();
```

2. Oven: Compiler/Optimizer

3. Runtime: Execute inference queries



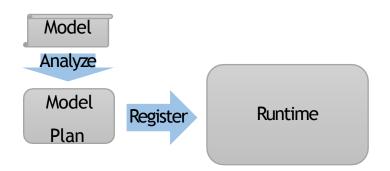
4. FrontEnd: Handle user requests



Prediction Serving with PRETZEL

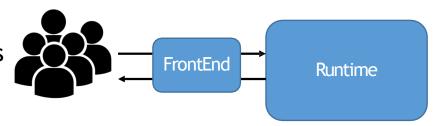
1. Offline

- Analyze structural information of models
- Build ModelPlan for optimal execution
- Register ModelPlan to Runtime

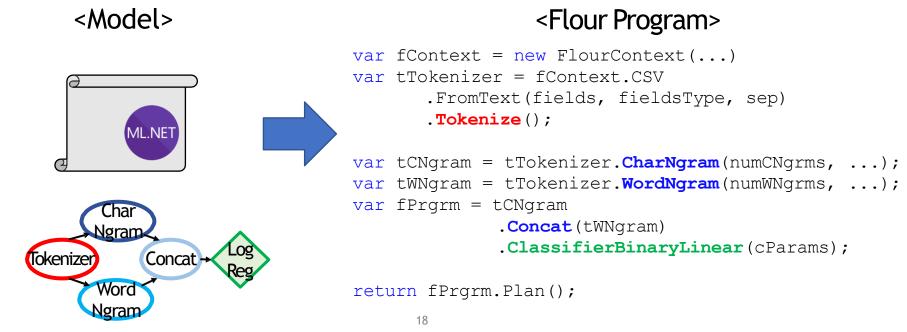


2. Online

- Handle prediction requests
- Coordinate CPU & memory resources



1. Translate Model into Flour Program



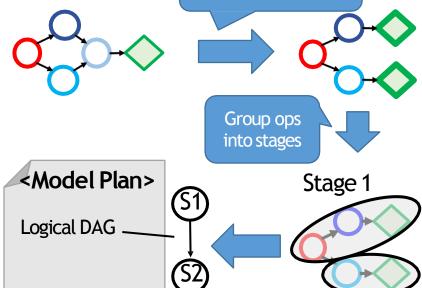
Rule-based optimizer

Stage 2

Push linear predictor & Remove Concat

2. Oven optimizer/compiler build Model Plan

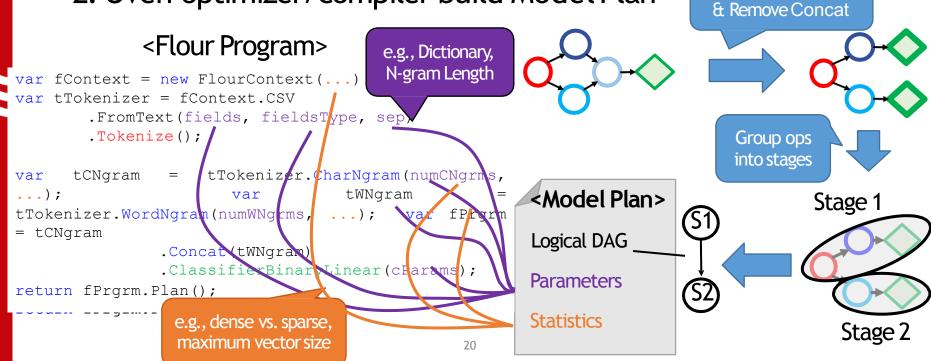
<Flour Program>



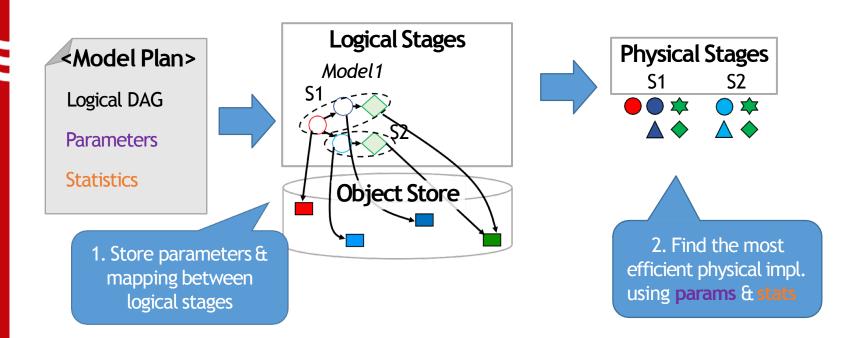
Rule-based optimizer

Push linear predictor

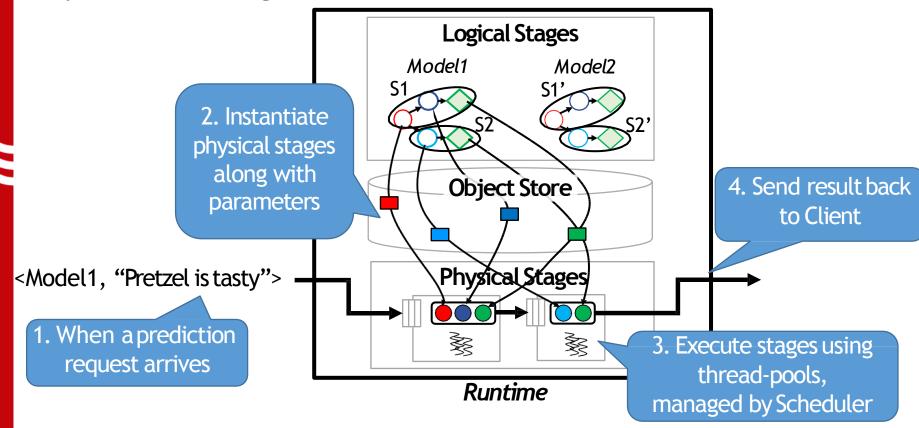
2. Oven optimizer/compiler build Model Plan



3. Model Plan is registered to Runtime



3. Register selected 3. Model Plan is registered to Runtime physical stages to Catalog **Logical Stages Physical Stages** Catalog <Model Plan> Model1 Logical DAG **Parameters** N-gram length **Statistics** Sparse vs. Dense **Object Store** 1 vs. 3 2. Find the most 1. Store parameters & efficient physical impl. mapping between using params & stats logical stages



Outline

- (Black-box) Prediction Serving Systems
- Limitations of Black box approaches
- PRETZEL: White-box Prediction Serving System
- Evaluation
- Conclusion

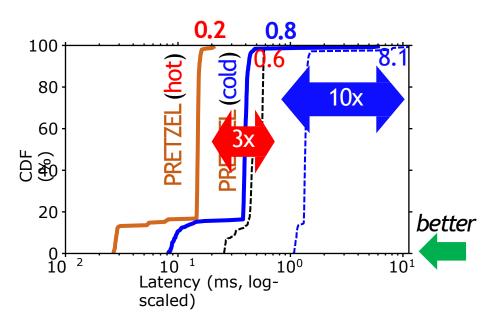
Evaluation

- Q. How PRETZEL improves performance overblack-box approaches?
 - in terms of *latency*, *memory* and *throughput*
- 500 Models from Microsoft Machine Learning Team
 - 250 Sentiment Analysis (Memory-bound)
 - 250 Attendee Count (Compute-bound)
- System configuration
 - 16 Cores CPU, 32GBRAM
 - Windows 10, .Net core 2.0

Evaluation: Latency

- Micro-benchmark (No server-client communication)
 - Score 250 Sentiment Analysis models 100 times for each
 - Compare ML.Net vs. PRETZEL

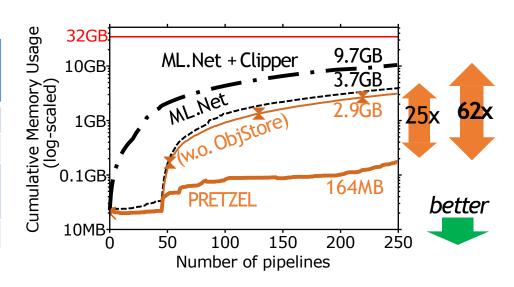
	ML.Net	PRETZEL
P99 (hot)	0.6	0.2
P99 (cold)	8.1	0.8
Worst (cold)	280.2	6.2



Evaluation: Memory

- Measure Cumulative Memory Usage after loading 250 models
 - Attendee Count models (smaller size than Sentiment Analysis)
 - 4 settings for Comparison

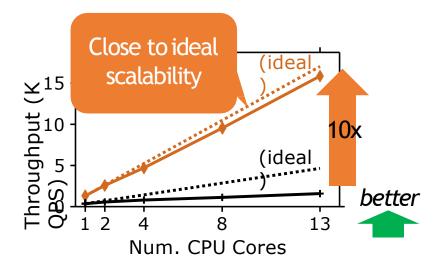
Settings	Shared Objects	Shared Runtime
ML.Net + Clipper		
ML.Net		\checkmark
PRETZEL without		√
ObjectStore PRETZEL	√	√



Evaluation: Throughput

- Micro-benchmark
 - Score 250 Attendee Count models 1000 times for each
 - Request 1000 queries in a batch
 - Compare ML.Net vs. PRETZEL

More results in the paper!



- PRETZEL is the first white-box prediction serving system for ML pipelines
- By using models' structural info, we enable two types of optimizations:
 - End-to-end optimizations generate efficient execution plans for a model
 - Multi-model optimizations let models share computation and memory resources
- Our evaluation shows that PRETZEL can improve performance compared to Black-box systems (e.g., ML.Net)
 - Decrease latency and memory footprint
 - Increase resource utilization and throughput
- A lot of external optimizations used by Cipper are orthogonal to PRETZEL

Thank you! Questions?