CIEL : A Universal Execution Engine

G Roshan Lal

What is CIEL?

Computation Engine
Distributed Data-Flow
Universal

Other Distributed Execution Engines....Data-Flow
- MapReduce....... Bi-Partite Graph

Why CIEL?

« MapReduce/Dryad Is

« Good For: « Bad For:
- Batch-Oriented - lterative
- Eg. Info Retrieval - Eg. ML Training
- High Throughput - Low Latency, chained

events

How CIEL works?

« Dynamic Task Graphs

Concrete
u object
SPAWNS .
Roottask —{ A beceemeaa= Child task
DELEGATES Future
object
Result :';‘]*
(future) L

(a) Dynamic task graph

e Task / Object Tables

How CIEL works?

Task ID Dependencies Expected outputs
A {u} 4
B {v} X
C {w} y
D { Xy} z
Object ID | Produced by Locations
u — { hostl19, host85 }
v — { host21, host23 }
W - { host22, host57 }
X B)
y C 0
z X D)

(b) Task and object tables

How CIEL works?

e ODbjects : Named collection of Bytes

e References : Obj Name, Physical Location (maybe
empty....not yet created)

e Tasks

— Publish output objects (or)

- Spawn new Tasks depending on output objects
- Dynamic DAG.... Prevents Deadlock

- Lazy Evaluation... Easier fault Tolerance

CIEL Architecture

e Single Master

- Keeps record of obj and task tables
- Dispatches tasks to workers

e Multiple Workers

- HeartBeat messages for availability to Master
- Update Master with Spawn/Publish

CIEL Fault Tolerance

o Workers:

- HeartBeat from Workers/ Response to Master
- Re-schedule

 Master:
- Persistent Logging of Tables

CIEL Optimizations

e Long tails of recursion:

- Assume deterministic behaviour of tasks
- Memoization of output for given input

« Persistent logging of (Single) Master:

- Secondary Masters
- Reconstruct from Workers

o Skywriting:
- Scripting Language for CIEL

Conclusion

CIEL perfroms well on all types of loads
MapReduce Types: grep
lterative Types: k-means

Compute Intensive Types: Smith-Waterman

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

