
Dynamo
Saurabh Agarwal

What have we looked at so far ?

Assumptions

● CAP Theorem

● SQL and NoSQL

● Hashing

Origin’s of Dynamo

This is year 2004

One Amazon was growing and other shrinking

What led to Dynamo ?

What led to Dynamo ?
● Amazon was using Oracle enterprise edition
● Despite access to experts at Oracle, the DB just couldn’t handle the load.

What did folks at Amazon Do ?

Query Analysis

90% of operations weren't using the JOIN functionality that is core to a relational database

Goals which Dynamo wanted to achieve
● Highly Always available

● Consistent performance

● Horizontal Scaling

● Decentralized

Goals which Dynamo wanted to achieve
● Highly Always available

● Consistent performance

● Horizontal Scaling

● Decentralized

Major aspects of Dynamo design
● Interface
● Data Partitioning
● Data Replication
● Load Balancing
● Eventual Consistency
● And a lot of other this and that, hopefully we will cover all of it.

Consistency Model

Eventually Consistent
● The reads can contain stale data for some bounded time .

Amazon chose Eventual Consistency Model
● Application will work just fine with eventual consistency

● They needed a scalable DB

Let’s Finally get to Dynamo !!

This is Dynamo !!

A

B

C

D

E

F

Origin of this ring ?
● Consistent Hashing ?
● How can we increase or decrease number of nodes in distributed cache

without re-calculating the full distribution of hash table ?

● Each node is assigned a spot in
the ring

● A data point is the responsibility
of the first node in the
clockwise direction
(coordinator node)

Some issues with Consistent Hashing
● Random Assignment

● Heterogeneous Performance of
Node

How replication work ?
● The coordinator node

replicates to next N-1 nodes.

● N is the replication factor

Data Versioning
● Eventual Consistency

● Multiple Versions of same data
might exist in systems

● Come Vector Clocks

Vector Clocks

Dynamo DB deployment
● Loadbalancer

● Client Aware library

Dynamo DB query interface
● get() and put() operations

● Configurable R and W.

● R = Min Number of Nodes to read from before returning
● W = Min number of Nodes on which data should be written before

returning

Making Dynamo Consistent
● If R+W > N

○ Dynamo becomes consistent

● Availability and Performance takes a hit.

Handling Failures
● Hinted Handoff

● Replica Synchronization

Hinted Handoff
●

Replica Synchronization
● Each node maintains separate Merkle Tree of the key ranges it’s handling

● A background job runs trying to do a quick match and find which set of
replicas need to be merged.

Failure Detection
● If a node is not reachable the request is routed to the next node,

● No need to explicitly detect failure. As node removal is explicit operation.

Differences between GFS/BigTable and Dynamo
● No centralized control

● No locks on data.

Optimizations done later
● Instead of write to disk, write to buffer

● Separate writer , write to disk

● Faster write performance

Change in key partition strategy
● The one described -

○ Random
○ Hash space not uniform

● Problems-
○ Data copy difficult
○ Merkle Tree reconstructed

New Partition Strategy
● Divide hash space equally in Q portions
● Each node S is given Q/S tokens
● A new node randomly picks it’s Q/S+1 tokens
● A removal of node randomly distributes Q/S

 tokens

Impact
● A lasting impact on industry, forced SQL advocated to build distributed

SQL DB’s
● Cassandra, Couchbase
● Established scalability of NoSQL databases.

Questions

Adding a node to the ring
● The administrator issues a request to one of the node in the ring.

● The serving request node makes a persistent copy of the membership
change and propagates via gossip protocol

Node on startup

